% This is macro package used by OpTeX, see http://petr.olsak.net/optex % math.opm, Petr Olšák , 2022 % This file can serve as an template for other package files % See end of the file for more information \_def\_math_version {0.16, 2024-10-17} \_codedecl \replacemissingchars {Doing math more comfortably <\_math_version>} \_namespace{math} \_doc The `math` package provides options, they can be declared using the \`\mathsetup``{}` macro. For example `\mathsetup {vert, dots}`. If you create your own package with options, provide a similar `\set` macro. The \`\.kv` macro is similar to \OpTeX's `\kv`, but with specific `pkg:math` dictionary. \_cod \_def\.mathsetup #1{% \_edef\.restorekvdict{\_kvdict{\_the\_kvdict}}% \_kvdict{pkg:math}% \_nokvx {\_opwarning{\_the\_kvdict: unknown option "##1", ignored}}% \_kvx {vert} {\.smartvert}% sets | as math active, to do better |x| or ||x|| \_kvx {dots} {\.smartdots}% \dots behaves like \ldots or \cdots \_kvx {interval} {\_let\_=\.interval}% enables \_<0,1) \_kvx {rmsbsp} {\.rmsbsp}% activates x_[text] and x^[text] \_kvx {bfserif} {\.bfserif}% \bf, \bi select fonts with serifs \_kvx {flexipa} {\.flexipa}% flexible partial symbol \_kvx {mstyle} {\.mstyle{##1}}% sets mstyle=TeX or ISO or french or upright \_kvx {bstyle} {\.bstyle{##1}}% sets bstyle=TeX or ISO or upright or OpTeX \_kvx {rmchars} {\.rmchars{##1}}% does \.rmchars{} \_kvx {vargreek} {\.vargreek{##1}}% does \.vargreek{} \_kvx {text} {\.dotext{##1}}% does \.dotext{} \_kvx {enablefic}{\.enablefic}% enables final italic correction \_readkv{#1}% \.restorekvdict } \_def\.kv #1{\_trycs{_kv:pkg:math:#1}{\_kvunknown}}% for accessing values given by \mathsetup \_nspublic \mathsetup ; \_newpublic \_let\mathset = \.mathsetup % for backward compatibility \_doc \`\bigp`, \`\bbigp`, \`\Bigp`, \`\biggp`, \`\Biggp`, \`\autop`, \`\normalp` are inspired from \tricklink[bigp]{0094} \_cod \_def\.bigp #1{\.fparam{#1}\_bigl\_bigr} \_def\.bbigp #1{\.fparam{#1}\_bbigl\_bbigr} \_def\.Bigp #1{\.fparam{#1}\_Bigl\_Bigr} \_def\.biggp#1{\.fparam{#1}\_biggl\_biggr} \_def\.Biggp#1{\.fparam{#1}\_Biggl\_Biggr} \_def\.autop#1{\.fparam{#1}\_left\_right} \_def\.normalp#1{\.fparam{#1}\_relax\_relax} \_def\.fparam#1#2#3{% \_isequal .{#1}\_iffalse #1\_fi \_let\.bigleft=#2\_let\.bigright=#3\_nospacefuturelet\.next\.fparamA} \_def\.fparamA{% \_casesof \.next ( {\.fparamB()}% [ {\.fparamB[]}% \{ {\.fparamB\{\}}% \_bgroup {\_def\.lparen{\{}\_def\.rparen{\}}\.fparamC}% \_finc {}% } \_def\.fparamB#1#2{% \_def\.lparen{#1}\_def\.rparen{#2}% \_def\.next#1##1#2{\_trick_ensurebalanced#1#2\.fparamC{##1}}% \.next } \_def\.fparamC#1{% \_ifx\.bigleft\_left \_mathopen{}\_bgroup\_fi \.bigleft\.lparen{#1}\.bigright\.rparen \_ifx\.bigright\_right \_egroup\_fi } \_nspublic \bigp \bbigp \Bigp \biggp \Biggp \autop \normalp ; \_doc We need macro \`\.ensurebalanced``` for balancing nested parentheses from \tricklink[balancing]{0043}. We use `trick` namespace for these macros. \_cod \_resetnamespace{trick} \_def\.ensurebalanced#1#2#3{\_immediateassigned{% \_def\.balopen{#1}\_def\.balclose{#2}\_let\.balaction=#3% \_def\.readnextbal##1##2#2{\.ensurebalancedA{##1#2##2}}}% \.ensurebalancedA} \_def\.ensurebalancedA#1{\.isbalanced#1% \_iftrue\_afterfi{\.balaction{#1}}\_else\_afterfi{\.readnextbal{#1}}\_fi} \_def\.isbalanced#1\_iftrue{\_immediateassignment\_tmpnum=0 \.isbalancedA#1{\.isbalanced}} \_def\.isbalancedA#1#{\.countbalanced#1\.isbalanced \.isbalancedB} \_def\.isbalancedB#1{% \_ifx\.isbalanced#1\_afterfi{\_cs{ifnum}\_tmpnum=0 }\_else\_ea\.isbalancedA\_fi} \_def\.countbalanced#1{\_ea\_ifx\.balopen #1\_immediateassignment\_incr\_tmpnum\_fi \_ea\_ifx\.balclose#1\_immediateassignment\_decr\_tmpnum\_fi \_ifx\.isbalanced#1\_else\_ea\.countbalanced\_fi} \_resetnamespace{math} \_doc \`\smartdots` re-sets `\dots` to `\.dots`. The `\.dots` lets `\.next` using `\futurelet` and checks the `\.next`: It it is declared by `\_chardef` then `\.mchar` is the real Unicode character with `\chardef`ed code. If `\.next` is a real Unicode character then `\.mchar` includes it. This is done by the expandable \o`\cstochar` macro provided by \OpTeX/. If `\.next` is something else (i.e.\ `\.mchar` is empty) then print \o`\ldots` else print \o`\cdots` for Op, Bin, Rel, Open, Close math classes of the `\.next` math object or prints \o`\ldots` in other cases. \_cod \_def\.smartdots {\_let\dots=\.dots} \_def\.dots{\_relax \_ifmmode \_ea\.specdots \_else \_dots \_fi} \_def\.specdots{\_futurelet\.next\.specdotsA} \_def\.specdotsA{% \.ischardef\.next\_iftrue \_edef\.mchar{\_Uchar\.next}% \_else \_edef\.mchar{\_cstochar\.next}% \_fi \_ifx\.mchar\_empty \_ldots \_else \_Umathcharnumdef\.next=\_Umathcode\_ea`\.mchar \_relax \_ifcase \.readclass\.next \_ldots\_or \_cdots\_or \_cdots\_or \_cdots\_or \_cdots\_or \_cdots \_else \_ldots \_fi \_fi } \_def\.ischardef #1\_iftrue {\_ea\.ischardefA\_meaning#1\_fin} \_def\.ischardefA #1#2#3#4#5#6\_fin {\_def\.tmpa{#1#2#3#4#5}\_ifx\.tmpa\.stringchar} \_edef\.stringchar{\_string\char} \_def\.readclass#1{\_ea\.readclassA\_meaning#1\_fin} \_def\.readclassA#1"#2"#3\_fin{#2} \_nspublic \smartdots ; \_doc The macro \`\.interval` reads following tokens until the `)` or `>` is found in the input queue and replaces \code{<} to `\langle` and `>` to rangle. The reading and replacing process saves the tokens to the `\intevalL` macro only and finally this macro is launched. \_cod \_def\.interval{\_def\.intervalL{}\.intervalA} \_def\.intervalA{\_nospacefuturelet\.next\.intervalB} \_def\.intervalB{\_ifx\.next\_bgroup \_ea\.intervalC \_else \_ea\.intervalD \_fi} \_def\.intervalC#1{\_addto\.intervalL{{#1}}\.intervalA} \_def\.intervalD#1{\_casesof #1 < {\_addto\.intervalL{\langle}\.intervalA} > {\_addto\.intervalL{\rangle}\.intervalL} ) {\_addto\.intervalL{)}\.intervalL} \_finc {\_addto\.intervalL{#1}\.intervalA}% } \_doc \`\smartvert` sets `|` as math-active character and declares it equal to `\.autovert` macro. This macro checks two variants: there is single `|` or there is double `||`. It runs \`\.autovertA` or \`\.autoVertA`. These macros find the closing `|` or `||` and use `|` or `‖` in context of `\left`, `\right`. The \`\singlevert` is declared here if a user want to use a single vertical bar. \_cod \_newpublic\_mathchardef \singlevert=\_mathcode`| \_def\.autovert {\_isnextchar|{\.autoVertA}{\.autovertA}} \_def\.autovertA #1|{\_mathopen{}\_mathclose{\_left|#1\_right|}} \_def\.autoVertA|#1||{\_mathopen{}\_mathclose{\_left‖#1\_right‖}} \_bgroup \_lccode`\~=`\| \_lowercase{\_egroup \_def\.smartvert{\_let~=\.autovert \_mathcode`|="8000 }} \_nspublic \smartvert ; \_doc \`\rmsbsp` activates `^` and `_` so they check the next character. If it is `[` then `\mathbox` is used for subscript or superscript, else normal behavior of subscript or superscript is kept. \_cod \_def\.rmsbsp{% \_adef ^{\_isnextchar[{\.rmsp}{\_sp}} \_adef _{\_isnextchar[{\.rmsb}{\_sb}} \_def\.rmsp[##1]{\_sp{\_mathbox{##1}}} \_def\.rmsb[##1]{\_sb{\_mathbox{##1}}} \_catcode `\^=12 \_catcode`\_=11 \_mathcode`_="8000 \_mathcode`^="8000 } \_nspublic \rmsbsp ; \_doc The control sequences \`\N`, \`\Z`, \`\Q`, \`\R`, \`\C` \`\sgn`, \`\argmin`, \`\argmax`, \`\grad`, \`\rank`, \`\tr`, \`\diag`, \`\Span`, \`\Rng`, \`\Null`, \`\Ker`, \`\Res`, \`\tg`, \`\cotg`, \`\arctg`, \`\arccotg`, \`\frac`, \`\dfrac`, \`\tfrac`, \`\.` are defined directly in the user space by \o`\_newpublic`. The \`\.pdef` is a shortcut for `\protected\def`. \_cod \_def\.pdef{\_protected\_def} \_newpublic\.pdef \N {{\_bbchar N}} \_newpublic\.pdef \Z {{\_bbchar Z}} \_newpublic\.pdef \Q {{\_bbchar Q}} \_newpublic\.pdef \R {{\_bbchar R}} \_newpublic\.pdef \C {{\_bbchar C}} \_newpublic\.pdef \sgn {\_mathop{\_rm sgn}\_nolimits} \_newpublic\.pdef \argmin {\_mathop{\_rm argmin}} \_newpublic\.pdef \argmax {\_mathop{\_rm argmax}} \_newpublic\.pdef \grad {\_mathop{\_rm grad}\_nolimits} \_newpublic\.pdef \rank {\_mathop{\_rm rank}\_nolimits} \_newpublic\.pdef \tr {\_mathop{\_rm tr}\_nolimits} \_newpublic\.pdef \diag {\_mathop{\_rm diag}\_nolimits} \_newpublic\.pdef \Span {\_mathop{\_rm Span}\_nolimits} \_newpublic\.pdef \Rng {\_mathop{\_rm Rng}\_nolimits} \_newpublic\.pdef \Null {\_mathop{\_rm Null}\_nolimits} \_newpublic\.pdef \Ker {\_mathop{\_rm Ker}\_nolimits} \_newpublic\.pdef \Res {\_mathop{\_rm Res}\_nolimits} \_newpublic\.pdef \tg {\_mathop{\_rm tg}\_nolimits} \_newpublic\.pdef \cotg {\_mathop{\_rm cotg}\_nolimits} \_newpublic\.pdef \arctg {\_mathop{\_rm arctg}\_nolimits} \_newpublic\.pdef \arccotg {\_mathop{\_rm arccotg}\_nolimits} \_newpublic\.pdef \frac #1#2{{{#1}\_over#2}} \_newpublic\.pdef \dfrac #1#2{{\_displaystyle{{#1}\_over#2}}} \_newpublic\.pdef \tfrac #1#2{{\_textstyle{{#1}\_over#2}}} \_newpublic\.pdef \.#1{{\_bf#1}} \_doc \`\eqsystem``{}` saves its parameter to `\.tmpb` and does a collection of `\_replstring`s. It replaces all spaces by `&` (but ignores the optional first and last space), it removes spaces before `\cr`, it precedes `\mathord` before all `-` (but not if the minus is alone in the column) and runs `\halign`. The \n`\baselineskip` is enlarged by \O`\openup`\`\eqskip`. Each item adds 0.5\`\eqsep` around it and \`\eqfil` to the left side and `\hfil` to the right side. \_cod \_protected \_optdef\.eqsystem[]#1{\_vcenter{% \_def\.tmpb{\.bb#1\.bb}\_replstring\.tmpb{ }{&}% \_replstring\.tmpb{\.bb&}{}\_replstring\.tmpb{&\.bb}{}\_replstring\.tmpb{&\cr}{\cr}% \_replstring\.tmpb{-}{\_mathord-}\_replstring\.tmpb{&\_mathord-&}{&-&}% \_let ~=\_relax \_the\_opt \_relax \_openup\.eqskip \_halign{&\_the\.eqfil\_kern.5\.eqsep$\_displaystyle{{}##{}}$\_kern.5\.eqsep\_hfil\_cr \.tmpb\_crcr}% }} \_let\.bb=\_empty \_newdimen\.eqskip \_newdimen\.eqsep \_newtoks\.eqfil \.eqfil={\_hfill} \_nspublic \eqsystem \eqskip \eqsep \eqfil ; \_doc The \`\toright` and \`\toleft` macros are based on the \o`\setpos` and \o`\posx` macros. The printing point is shifted by `\posx` to the left (i.e.\ to the left boundary of the sheet) and then it is shifted to the desired space by `\kern\hoffset+\hsize`. This idea is moved from \tricklink[torighteq]{0028}. \_cod \_newcount \.tomarginno \_def\.toright #1{\_incr\.tomarginno {\_setpos[_math_tr:\_the\.tomarginno]% \_rlap{\_kern-\_posx[_math_tr:\_the\.tomarginno]\_kern\_hoffset\_kern\_hsize\_llap{#1}}}} \_def\.toleft #1{\_incr\.tomarginno {\_setpos[_math_tr:\_the\.tomarginno]% \_rlap{\_kern-\_posx[_math_tr:\_the\.tomarginno]\_kern\_hoffset\_rlap{#1}}}} \_nspublic \toright \toleft ; \_doc The \`\subeqmark` works because the internal \O`\_thednum` is re-defined. The \`\.dnumpost` is added here. If you want to use another format for \O`\_thednum` then you have to add the \^`\.dnumpost` to it too. \_cod \_def \_thednum {(\_the\_dnum \.dnumpost)} \_def\.dnumpost{} \_def\.subeqmark #1{\_def\.dnumpost{#1}\_lowercase{\_ifx a#1}\_else \_decr\_dnum\_fi \_eqmark} \_nspublic \subeqmark ; \_doc \`\bfserif` re-defines internal \OpTeX/ \O`\_mabf` and \O`\_mabi` macros. \_cod \_def\.bfserif{\.unionly\bfserif{% \_protected\_def\_mabf {\_inmath{\_bfvariables\_bfgreek\_bfGreek\_bfdigits}}% \_protected\_def\_mabi {\_inmath{\_bivariables\_bigreek\_bfGreek\_bfdigits}}% }} \_nspublic \bfserif ; \_doc \`\flexipa` (or \`\flexiblepartial`) runs \~`\partialsymbolvars` `{it}`\,`{rm}`\,`{bfsans}`\,`{it}`\,`{bfitsans}`. The \`\partialsymbolvars` macro adds two tokens `\.partialvar \mpartial` to `\_mit`, `\_marm`, `\_mabf`, `\_mait`, `\_mabi` macros. The \`\.partialvar` macro sets appropriate `\_Umathcode` of the `\.partialchar` to the code given by the parameter `\mpartial`. Five macros \`\mbfpartial`, \`\mitpartial`, \`\mbfitpartial`, \`\mbfsanspartial`, \`\mbfitsanspartial` are declared in the macro file `unimath-table.opm`. The math character \`\mrmpartial` (for upright variant) is declared here. \_cod \_chardef\.partialchar="2202 \_Umathchardef\.mrmpartial=0 1 \.partialchar \_def\.partialvar #1{\_Umathcode \.partialchar 0 1 \_ifx#1\.mrmpartial \.partialchar \_else\_ea`#1 \_fi } \_def\.inadd#1#2{\_ea\.inaddA#1{#2}#1} \_def\.inaddA\_inmath#1#2#3{\_protected\_def#3{\_inmath{#1#2}}} \_def\.partialsymbolvars #1#2#3#4#5{% \_ifx\_ncharrmA\_undefined \_opwarning{\_string\flexipa: Unicode math must be loaded first}% \_else \_def\.tmp{\_ea\_addto \_ea\_mit \_ea {\_ea\.partialvar \_csname m#1partial\_endcsname}}% \_ifx\_mit\mit \.tmp \_let\mit=\_mit \_else \.tmp \_fi \_ea\.inadd \_ea\_marm \_ea {\_ea\.partialvar \_csname m#2partial\_endcsname}% \_ea\.inadd \_ea\_mabf \_ea {\_ea\.partialvar \_csname m#3partial\_endcsname}% \_ea\.inadd \_ea\_mait \_ea {\_ea\.partialvar \_csname m#4partial\_endcsname}% \_ea\.inadd \_ea\_mabi \_ea {\_ea\.partialvar \_csname m#5partial\_endcsname}% \_mit \_fi } \_def\.flexipa{\.unionly\flexipa{\.partialsymbolvars {it}{rm}{bfsans}{it}{bfitsans}}} \_newpublic \_let \flexiblepartial=\.flexipa \_nspublic \flexipa \partialsymbolvars \mrmpartial ; \_doc The options `mstyle`, resp. `bstyle` run \`\.mstyle`, resp. \`\.bstyle` and these macros set required shapes of math variables. This can be done only when Unicode-math is loaded already. This is a reason why \`\.unionly``{}{}` is used: it runs only when Unicode-math is loaded, otherwise it prints a warning. \_cod \_def\.mstyle #1{\.unionly{mstyle}{\_lowercase{\_cs{_math_mstyle_#1}}}} \_def\.bstyle #1{\.unionly{bstyle}{\_lowercase{\_cs{_math_bstyle_#1}}}} \_def\.mstyle_tex {% \_protected\_def\_mit {\_itvariables \_rmdigits \_itgreek \_rmGreek}\_mit } \_def\.mstyle_iso {% \_protected\_def\_mit {\_itvariables \_rmdigits \_itgreek \_itGreek}\_mit } \_def\.mstyle_french {% \_protected\_def\_mit {\_umathrange{A-Z}71\_ncharrmA \_umathrange{a-z}71\_ncharita \_rmdigits \_rmgreek \_rmGreek}% \_mit } \_def\.mstyle_upright {% \_protected\_def\_mit {\_rmvariables \_rmdigits \_rmgreek \_rmGreek}\_mit } \_def\.bstyle_tex {% \_protected\_def\_mabf {\_inmath{\_bfvariables\_bigreek\_bfGreek\_bfdigits}}% \_protected\_def\_mabi {\_inmath{\_bivariables\_bigreek\_bfGreek\_bidigits}}% } \_def\.bstyle_optex {% \_protected\_def\_mabf {\_inmath{\_bsansvariables \_bsansgreek \_bsansGreek \_bsansdigits}}% \_protected\_def\_mabi {\_inmath{\_bisansvariables \_bisansgreek \_bsansGreek \_bsansdigits}}% } \_def\.bstyle_iso {% \_protected\_def\_mabf {\_inmath{\_bivariables\_bigreek\_biGreek\_bfdigits}}% \_protected\_def\_mabi {\_inmath{\_bivariables\_bigreek\_bfGreek\_bidigits}}% } \_def\.bstyle_upright {% \_protected\_def\_mabf {\_inmath{\_bfvariables\_bfgreek\_bfGreek\_bfdigits}}% \_protected\_def\_mabi {\_inmath{\_bivariables\_bigreek\_biGreek\_bidigits}}% } \_def\.unionly #1{\_ifx\_rmvariables\_undefined \_opwarning{pkg:math: \_string#1 ignored: Unicode-math must be loaded}% \_ea\_ignoreit \_else \_ea\_useit \_fi } \_doc \`\rmchars``{}` is implemented using \O`\foreach`. The list is expanded first because we want to expand control sequences like `\alpha` to a real character $\_rmgreek \alpha$.\nl \`\vargreek``{}` is implemented using \O`\foreach`. The parameter is not expanded because we want to keep control sequences like `\alpha` unchanged. \_cod \_def\.rmchars#1{\.unionly\rmchars{\_ea\_foreach\_expanded{#1}\_do{\_ifx,##1\_else\.rmchar##1\_fi}}} \_def\.rmchar#1{\_Umathcode`#1=0 1 `#1 } \_def\.vargreek#1{\_foreach#1\_do{\_ifx,##1\_else \.vargreekchar##1\_fi}} \_def\.vargreekchar#1{% \_ifcsname var\_csstring#1\_endcsname \_slet{\_csstring#1}{var\_csstring#1}% \_else \_opwarning{\_string\vargreek: the \_bslash var\_csstring#1\_space doesn't exists}% \_fi } \_nspublic \rmchars \vargreek ; \_doc \`\textvariables`, \`\textdigits`, \`\textmoremath` initialize new two families 5, 6 using `\.textmathini` and sets `\mathcode`s of given characters to these families. Moreover, `\textvariables` adds `\fam` register setting to `\rm` and `\it` selectors and re-set Greek variables to use only math font (because we are not sure if Greek letters are in the current text fonts).\nl \`\.dotext``{}` runs `\.text` for each in the list. It is used when the option `text={}` is used. \_cod \_def\.textmathini{% \_fontdef\.mathrm{\_rm}\_fontdef\.mathit{\_it}% \_fontdef\.mathbf{\_bf}\_fontdef\.mathbi{\_bi}% \_addto\_normalmath{% \_setmathfamily 5 \.mathrm \_setmathfamily 6 \.mathit }% \_addto\_boldmath{% \_setmathfamily 5 \.mathbf \_setmathfamily 6 \.mathbi }% \_normalmath \_let\.textmathini=\_relax } \_def\.textvariables {\.unionly\textvariables {% \.textmathini \_mathcodes 6 {7{\_Urange a-z \_Urange A-Z}}% \_addto\_marm {\_fam5 }\_addto\_mait{\_fam6 }% \_protected\_def\_itgreek {\_umathrangegreek01\_greekita}% \_protected\_def\_rmgreek {\_umathrangegreek01\_greekrma}% \_protected\_def\_itGreek {\_umathrangeGREEK01\_greekitA} \_protected\_def\_rmGreek {\_umathrangeGREEK01\_greekrmA} \_itgreek \_rmGreek }} \_def\.textdigits {\.unionly\textdigits{\.textmathini \_mathcodes 5 {7{\_Urange 0-9}}}} \_def\.textmoremath {\.unionly\textmoremath{% \.textmathini \_mathcodes 5 {5{!?} 2{*+-} 3{=<>} 6{,:;} 0{./|} 4{([\{} 5{\})]}}% \_Umathcode `- = 2 5 "2212 % hyphen behaves like minus in math mode }} \_def\.dotext#1{\_foreach #1 \_do ##1 {\_trycs{_math_text##1}{\_opwarning{text option: "##1" unknown}}}} \_nspublic \textvariables \textdigits \textmoremath ; \_doc \`\replacemissingchars``` defines `\UnicodeMathSymbol` and reads `unimath-table.opm`, i.e.\ it does for each math character following if the character is missing in main math font and if it is present in added font and if it is not already replaced character then apply new math code or `\Umathaccent` definition. Its name is added to `\.alist` or `\.clist`. The new codes are declared by `\matchars{\clist}`. The `\.rlist` is the list of characters already replaced. They are not replaced again if a new `\replacemissingchars` is used. \_cod \_def\.rlist{\sqrt\cuberoot\fourthroot} % they cannot be replaced by \mathchars \_def\.replacemissingchars#1{\.unionly\replacemissingchars{% \_def\.alist{}\_def\.clist{} \_def\UnicodeMathSymbol##1##2##3##4{% \_iffontchar\_textfont1##1 \_else % not in main math font \_iffontchar\_textfont#1 ##1 % is presnet in added font \_isinlist\.rlist{##2}\_iffalse % not already replaced \_ifx##3\_mathaccent \_protected\_def##2{\_Umathaccent fixed 7 #1 ##1 }% \_addto\.alist{##2}% \_else \_addto\.clist{##2}% \_fi\_fi\_fi\_fi } \_input unimath-table.opm \_wlog{^^J\_string\replacemissingchars: From \_string\fam=\_string#1 is printed now:^^J% CHARACTERS: \_unexpanded\_ea{\.clist}^^JACCENTS: \_unexpanded\_ea{\.alist}^^J}% \_def\.tmp{\_mathchars #1}\_ea\.tmp\_ea{\.clist}% \_ea\_addto \_ea\.rlist \_ea{\.clist}\_ea\_addto \_ea\.rlist \_ea{\.alist}% \_def\.alist{}\_def\.clist{}\_let\UnicodeMathSymbol=\_undefined }} \_nspublic \replacemissingchars ; \_doc \`\scriptspaces``{}{}{}{}` sets internal \LuaTeX/ registers represented by appropriate primitives, see section 7.5 in the \LuaTeX/ manual. \_cod \_def\.scriptspaces #1#2#3#4{% \_Umathordrelspacing\_scriptstyle=\.orzeromu{#1}\_relax \_Umathrelordspacing\_scriptstyle=\.orzeromu{#1}\_relax \_Umathrelopspacing \_scriptstyle=\.orzeromu{#1}\_relax \_Umathordrelspacing\_crampedscriptstyle=\.orzeromu{#1}\_relax \_Umathrelordspacing\_crampedscriptstyle=\.orzeromu{#1}\_relax \_Umathrelopspacing \_crampedscriptstyle=\.orzeromu{#1}\_relax \_Umathordbinspacing\_scriptstyle=\.orzeromu{#2}\_relax \_Umathbinordspacing\_scriptstyle=\.orzeromu{#2}\_relax \_Umathbinopspacing \_scriptstyle=\.orzeromu{#2}\_relax \_Umathordbinspacing\_crampedscriptstyle=\.orzeromu{#2}\_relax \_Umathbinordspacing\_crampedscriptstyle=\.orzeromu{#2}\_relax \_Umathbinopspacing \_crampedscriptstyle=\.orzeromu{#2}\_relax \_Umathordrelspacing\_scriptscriptstyle=\.orzeromu{#3}\_relax \_Umathrelordspacing\_scriptscriptstyle=\.orzeromu{#3}\_relax \_Umathrelopspacing \_scriptscriptstyle=\.orzeromu{#3}\_relax \_Umathordrelspacing\_crampedscriptscriptstyle=\.orzeromu{#3}\_relax \_Umathrelordspacing\_crampedscriptscriptstyle=\.orzeromu{#3}\_relax \_Umathrelopspacing \_crampedscriptscriptstyle=\.orzeromu{#3}\_relax \_Umathordbinspacing\_scriptscriptstyle=\.orzeromu{#4}\_relax \_Umathbinordspacing\_scriptscriptstyle=\.orzeromu{#4}\_relax \_Umathbinopspacing \_scriptscriptstyle=\.orzeromu{#4}\_relax \_Umathordbinspacing\_crampedscriptscriptstyle=\.orzeromu{#4}\_relax \_Umathbinordspacing\_crampedscriptscriptstyle=\.orzeromu{#4}\_relax \_Umathbinopspacing \_crampedscriptscriptstyle=\.orzeromu{#4}\_relax } \_def\.orzeromu#1{\_ifx^#1^0mu\_else#1\_fi} \_nspublic \scriptspaces ; \_doc \`\mathclap``{}`, \`\mathrlap``{}`, and \`\mathllap``{}` are based on the \OpTeX/ macros \O`\mathstyles` and \O`\currstyle`. \_cod \_def\.mathclap#1{\_mathstyles{\_hbox to0pt{\_hss$\_currstyle#1$\_hss}}} \_def\.mathrlap#1{\_mathstyles{\_rlap{$\_currstyle#1$}}} \_def\.mathllap#1{\_mathstyles{\_llap{$\_currstyle#1$}}} \_nspublic \mathclap \mathrlap \mathllap ; \_doc \`\enablefic` enables final italic correction. The relevant lua function is registered to `mlist_to_hlist` callback and \`\finalitalcorr` is set to one. \_cod \_newcount \.finalitalcorr \_directlua{ function math.final_ital_corr(head, style) if style=="text" and tex.count.\_pkglabel _finalitalcorr>0 then for n in node.traverse(head) do if n.next == nil and n.id == 29 then % last is glyph local k = font.fonts[n.font].characters[n.char].italic if not(k==nil) and (k>0) then local kn = node.new("kern") kn.kern = k kn.subtype = 3 node.insert_after(head, n, kn) % kern node is inserted end end end end return head end } \_def\.enablefic {\_directlua{ % math.final_ital_corr is registered to mlist_to_hlist luatexbase.add_to_callback("mlist_to_hlist", function(head, style, penalties) head = node.mlist_to_hlist(head, style, penalties) return math.final_ital_corr(head, style) end, "italcorr after math") } \.finalitalcorr=1 } \_nspublic \enablefic \finalitalcorr ; \_endnamespace \_endcode \sec Summary This package provides various extensions usable for math typesetting. Mostly of them are inspired from \ulink[http://petr.olsak.net/optex/optex-tricks.html]{\OpTeX/ tricks} www page. The following macros are defined in this package: \begitems * \~`\bigp`, \~`\bbigp`, \~`\Bigp`, \~`\biggp`, \~`\Biggp`, \~`\autop`, \~`\normalp` gives better controlling of sizes of parentheses. * \~`\smartdots` declares `\dots` macro more intelligent. \~`\smartvert` declares \"`|`" for better spacing. * \~`\rmsbsp` activates roman subscripts and superscripts in `[...]`. * There are many common math macros for sets or for operators, for example \~`\R` or \~`\sgn`. * \~`\eqsystem` enables to write systems of equations comfortably, * \~`\toright`, \~`\toleft` puts the \o`\eqmark` to desired position, \~`\subeqmark` prints the given suffix as a part of the equation mark. * \~`\scriptspaces` sets more spaces around rel, bin in script and scripscript styles. * \~`\bfserif` sets `\bf` and `\bi` for math typesetting as for bold-serif, bold-italic-serif. * \~`\flexipa` enables flexible partial symbol. * \~`\rmchars` sets selected characters printed as `\rm`, \~`\vargreek` sets Greek leters to their variants. * \~`\textvariables`, \~`\textdigits`, \~`\textmoremath` enables characters from used text font in math mode (variables, digits, more characters). * \~`\replacemissingchars` allows to re-declare all characters missing in math font for printing them from additional math font. * \~`\enablefic` enables final italic correction of inline-math lists. \enditems Following options are provided by the `math` package. You can set them by \^`\mathsetup``{}` after `\load[math]`, for example `\mathsetup{dots, vert, vargreek={\epsilon,\rho}}`. The options are: \begitems * `dots` sets more intelligent `\dots`, the same as \~`\smartdots`. * `interval` sets `\_` as prefix of intervals, see section~\ref[interval]. * `vert` sets more intelligent `|`, the same as \~`\smartvert`. * `rmsbsp` sets roman sub/supscripts in `[...]`, the same as \~`\rmsbsp`. * `bfserif` sets bold-serif, bold-italic-serif, the same as \~`\bfserif`. * `flexipa` enables flexible partial symbol, the same as \~`\flexipa`. * `mstyle=