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Solutions for chapter Supervised Machine Learning

Exercise 1

> table(ALL_bcrneg$mol.biol)

BCR/ABL NEG
37 42

Exercise 2

> class(ALLfilt_bcrneg)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

Exercise 3

The distances available include Kullback-Leibler distance, mutual information distance, Euclidean distance,
Manhattan distance, and correlation distance (using Pearson, Spearman, or Kendall’s tau). See the dist

function and the daisy function in the cluster package for other distances.

Exercise 4

The diagonal band of blue squares is probably the most prominent feature, but it is merely indicating that each
sample is distance zero from itself. After that you might notice that there are some bluish colored blocks along the
diagonal, the most prominent one being in the top-left corner. The dendrogram also suggests that those samples
are similar to each other, and some distance from the others.

Exercise 5

Because the bioDist package is loaded we can simply call the spearman.dist function. All other steps are essentially
the same, as before.

> spD = spearman.dist(ALLfilt_bcrneg)

> ## spD@Size

> attr(spD, "Size")

[1] 79

> spM = as.matrix(spD)

> heatmap(spM, sym=TRUE, col=hmcol,

distfun=function(x) as.dist(x))
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Figure 1. A heatmap of the between-sample distances, for the same data
as in Figure ??, but now using Spearman’s correlation instead of the
Euclidean distance.

In this heatmap, the samples seem to be farther from each other (darker red colors predominate), but there are
a small number that are quite close, as evidenced by the light blue rectangle in the middle of the heatmap.

Exercise 6

> cD = MIdist(ALLfilt_bcrneg)

> cM = as.matrix(cD)

> closest.top("03002", cM, 1)

[1] "09017"

Exercise 7

We use the MLearn interface to the machine learning code. We make use of the MLearn interface to the different
machine learning tools, provided by MLearn.

The function, confuMat, can be used to compute the confusion matrix, and from that we can estimate the error
rates.

> kans = MLearn( mol.biol ~ ., data=ALLfilt_bcrneg,

knnI(k=1,l=0), TrainInd)

> confuMat(kans)

predicted

given BCR/ABL NEG

BCR/ABL 12 5

NEG 10 12

> dldans = MLearn( mol.biol ~ ., ALLfilt_bcrneg, dldaI,

TrainInd)

> confuMat(dldans)

predicted

given BCR/ABL NEG

BCR/ABL 10 7

NEG 8 14
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> ldaans = MLearn( mol.biol ~ ., ALLfilt_bcrneg, ldaI,

TrainInd)

> confuMat(ldaans)

predicted

given BCR/ABL NEG

BCR/ABL 15 2

NEG 7 15

Exercise 8

a Ties are broken at random. This suggests that it might not be all that helpful to select a value of k that is
even, as different users would potentially classify samples differently, given the same data.

b This is difficult with the current implementation. You would essentially need to do the nearest neighbor
finding directly from the distance matrix, and this will be somewhat slow. The closest.top function, from
the bioDist package could be used.

c The knn function has a parameter prob that if set to TRUE will cause the proportion of votes for the winning
class to be returned. This could be used. Also, the parameter l can be used; in that case doubt is encoded as
NA. The concept of outlier is more difficult, but could potentially be handled in a preprocessing step. Any
object that is a long way from all other objects could be identified as an outlier and removed. This does not
help with pairs of outliers, or triples.

Exercise 9

We repeat the steps taken above, but use all of the data.

> alltt = rowttests(ALLfilt_bcrneg, "mol.biol")

> ordall = order(abs(alltt$statistic), decreasing=TRUE)

> fNall = featureNames(ALLfilt_bcrneg)[ordall[1:50]]

> intersect(fNall, fNtt)

[1] "1635_at" "1674_at" "40504_at" "40202_at"

[5] "32434_at" "37027_at" "40167_s_at" "37403_at"

[9] "40480_s_at" "33774_at" "36591_at" "37363_at"

[13] "34472_at" "35162_s_at" "37014_at" "32542_at"

[17] "33362_at" "33440_at" "36275_at" "40516_at"

[21] "1467_at" "40076_at" "106_at" "38994_at"

[25] "1249_at" "36638_at"

Exercise 10

We simply redo the calls with

> dldtt = MLearn( mol.biol ~ ., BNf, dldaI, TrainInd)

> confuMat(dldtt)

predicted

given BCR/ABL NEG

BCR/ABL 11 6

NEG 3 19

> ldatt = MLearn( mol.biol ~ ., BNf, ldaI, TrainInd)

> confuMat(ldatt)

predicted

given BCR/ABL NEG

BCR/ABL 15 2

NEG 3 19

In all cases the error rates are lower, which is nice.
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Exercise 11

Each sample is left out, in turn, and because k = 1 the class of that sample is determined by its nearest neighbor in
the remaining n− 1 samples. For larger values of k, then more nearest neighbors would be used in the prediction.
The confusion matrix is produced by the confuMat function, and it can be used to estimate either the overall error
rate, or the class conditional error rates.

> knnCM = confuMat(knnXval1)

> knnCM

predicted

given BCR/ABL NEG

BCR/ABL 32 5

NEG 16 26

> #overall error rate

> (knnCM[1,2] + knnCM[2,1])/sum(knnCM)

[1] 0.266

> #class conditional error rates

> knnCM[1,2]/sum(knnCM[1,])

[1] 0.135

> knnCM[2,1]/sum(knnCM[2,])

[1] 0.381

So it seems that it was harder to predict the NEG phenotype than the BCR/ABL phenotype.

Exercise 12

a > lk3f2 = MLearn(mol.biol~., data=BNx, knnI(k=1),

xvalSpec("LOO", fsFun=fs.absT(5)))

> confuMat(lk3f2)

> table(unlist(fsHistory(lk3f2)))

The error rate seems to be bit higher when only five features are selected.

Exercise 13

This is quite an interesting problem. Basically, what you need to do is to try out the KNN algorithm, for a variety
of values of k, and see what value of k gives the lowest error rate.

> knnXval2 = MLearn(mol.biol~., data=BNx, knn.cvI(k=2, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval2)

> knnXval3 = MLearn(mol.biol~., data=BNx, knn.cvI(k=3, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval3)

> knnXval5 = MLearn(mol.biol~., data=BNx, knn.cvI(k=5, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval5)

Exercise 14

We are only concerned with the errors for the test set because those for the training set are known to be overly
optimistic. Error rates can be computed for either all predictions combined, or on a per class basis. It is often the
case that error rates can be quite different for different classes, so we also compute the class conditional error rates.
Note that the error rates are a bit worse for model 2, which had a much smaller value of mtry.

> cf1 = confuMat(rf1)

> overallErrM1 = (cf1[2,1] + cf1[1,2])/sum(cf1)

> overallErrM1
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[1] 0.179

> perClass1 = c(cf1[1,2], cf1[2,1])/rowSums(cf1)

> perClass1

BCR/ABL NEG

0.176 0.182

And now for model 2.

> cf2 = confuMat(rf2)

> overallErrM2 = (cf2[2,1] + cf2[1,2])/sum(cf2)

> overallErrM2

[1] 0.205

> perClass2 = c(cf2[1,2], cf2[2,1])/rowSums(cf2)

> perClass2

BCR/ABL NEG

0.294 0.136

For KNN we had the following error rates:

> cfKNN = confuMat(knnf)

> (cfKNN[1,2] + cfKNN[2,1])/sum(cfKNN)

[1] 0.282

> #class conditional error rates

> cfKNN[1,2]/sum(cfKNN[1,])

[1] 0.353

> cfKNN[2,1]/sum(cfKNN[2,])

[1] 0.227

And in this case, it seems that KNN has the lower overall error rate, 0.282 compared to 0.179 for model 1 and
0.205 for model 2.

Exercise 15

We can obtain the importance measure by calling the importance function.

> impvars = function(x, which="MeanDecreaseAccuracy", k=10) {

v1 = order(importance(x)[,which], decreasing=TRUE)

importance(x)[v1[1:k],]

}

> ivm1 = impvars(rf1@RObject, k=20)

> ivm2 = impvars(rf2@RObject, k=20)

> intersect(row.names(ivm1) , row.names(ivm2))

[1] "X1467_at" "X40196_at" "X1635_at" "X40504_at"

[5] "X37027_at" "X1674_at" "X40202_at" "X32696_at"

The other importance measure is called MeanDecreaseGini, and we leave that part of the problem to the reader.

Exercise 16

Reversing the role of the test and training sets is quite simple, we use model 2.

> rfRev = MLearn( mol.biol~., data=ALLfilt_bcrneg,

randomForestI, TestInd, ntree=2000, mtry=10,

importance=TRUE)
> rfRev
MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = ALLfilt_bcrneg, .m

ethod = randomForestI,

trainInd = TestInd, ntree = 2000, mtry = 10, importa

nce = TRUE)
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Predicted outcome distribution for test set:

BCR/ABL NEG

19 21

and for the confusion matrix

> cfR = confuMat(rfRev)

> cfR

predicted

given BCR/ABL NEG

BCR/ABL 14 6

NEG 5 15

> overallErr = (cfR[2,1] + cfR[1,2])/sum(cfR)

> overallErr

[1] 0.275

> perClass = c(cfR[1,2], cfR[2,1])/rowSums(cfR)

> perClass

BCR/ABL NEG

0.30 0.25

We can see from the confusion matrix that the error rate observed is roughly comparable to that obtained with
the other split, as we expected, inasmuch as the two sets were roughly the same size.

It is also quite simple to use the whole dataset to fit a random forest.

> rfAll = MLearn( mol.biol~., data=ALLfilt_bcrneg,

randomForestI, 1:79, ntree=1000, mtry=10,

importance=TRUE)
> rfAll@RObject
Call:

randomForest(formula = formula, data = trdata, ntree =

1000, mtry = 10, importance = TRUE)

Type of random forest: classification

Number of trees: 1000

No. of variables tried at each split: 10

OOB estimate of error rate: 19%

Confusion matrix:

BCR/ABL NEG class.error

BCR/ABL 27 10 0.270

NEG 5 37 0.119

Exercise 17

Using KNN is quite straightforward. We demonstrate its use for k = 1; you might want to try other methods.

> knn1MV = knn(t(exprs(trainSet)), t(exprs(testSet)),

trainSet$mol.biol)

> tab1 = table(knn1MV, testSet$mol.biol)

> tab1

knn1MV ALL1/AF4 BCR/ABL NEG

ALL1/AF4 5 0 0

BCR/ABL 0 15 13

NEG 0 3 8

> s3 = table(testSet$mol.biol)

Class conditional error rates are estimated by considering those with the correct classification (on the diagonal
of the table produced above). For example, of the 18 BCR/ABL samples in the test set, 15 are correctly classified,
so that the class conditional error rate is 0.17.

It is not so easy to handle unbalanced data. One can, in principle, find k nearest neighbors, and then compare
the proportion of nearest neighbors to the class counts.
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