Writing our first Bioconductor package as members of the CDSB community

Joselyn Chávez, Carmina Barberena Jonas, Emiliano Sotelo

A recap of the Community of Bioinformatics Software Developers (CDSB in Spanish)

Leonardo Collado-Torres, PhD

Research Scientist

Genomics, R programming, Biostatistics, Teaching, Diversity

Alejandro Reves. PhD

Genomic Data Scientist / Postdoc

Data Science, Genomics, R

Delfino García-Alonso

Laboratory Technician

Bioinformatics

Alejandra Medina Rivera, PhD

Investigator

Gene regulation, **Bioinformatics**

Heladia Salgado Osorio

Laboratory Technician

Bioinformatics, Teaching

Board

Leonardo Collado-Torres, PhD

Research Scientist

Genomics, R programming, Biostatistics, Teaching,

Diversity

Alejandro Reyes, PhD

Genomic Data Scientist / Postdoc

A 7 8 0

Data Science, Genomics, R

Alejandra Medina Rivera, PhD

Investigator

Gene regulation, **Bioinformatics**

Heladia Salgado Osorio

Laboratory Technician

Bioinformatics, Teaching

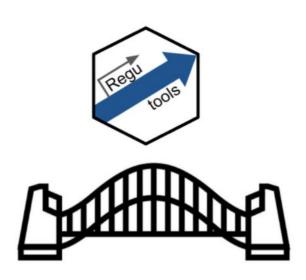
Joselyn Chavez, Ph.D. Candidate

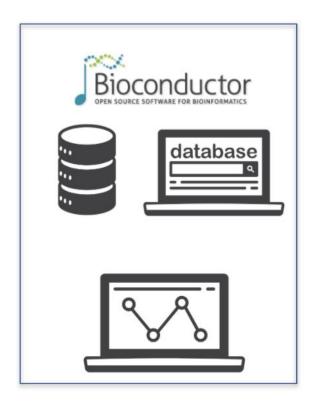
Bioinformatics, R programming, Bioconductor, Genetics

Events held by the CDSB

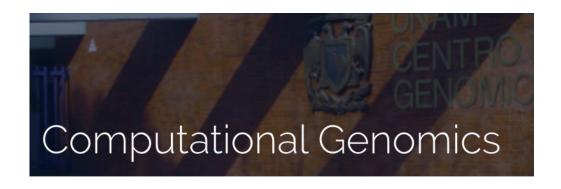
Workshop 2018: Latin American R/BioConductor Developers Workshop

Workshop 2019: How to Build and Create Tidy Tools




What is regutools?

Transcriptional regulation and transcriptional networks in *E. coli*.

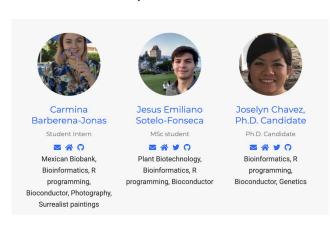


How it started?

What we had at this point

- Functions
- SQLite database

Building regutools as a package


- Functions improvement
- Documentation
- Vignette
- Tests
- Integrated workflow

regutools team

Developers and Mentors

Developer Alumni

Regulondb Maintainer

Connect to the RegulonDB database

```
regulondb_conn <- connect_database()</pre>
```

 Build a new object defined as a regulondb object

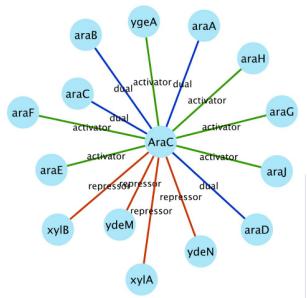
```
e_coli_regulondb <-
    regulondb(
        database_conn = regulondb_conn,
        organism = "E.coli",
        database_version = "1",
        genome_version = "1"
)</pre>
```

 List datasets contained in the RegulonDB database

List columns called attributes from the datasets

```
list_datasets(e_coli_regulondb)
#> [1] "DNA_OBJECTS" "GENE" "NETWORK"
#> [4] "OPERON" "PROMOTER" "REGULONDB_OBJECTS"
#> [7] "TF" "TU"
```

Retrieve and filter data


```
get_dataset(
    regulondb = e_coli_regulondb,
    dataset = "GENE",
    attributes = c("posleft", "posright", "strand", "name"),
    filters = list("name" = c("araC", "crp", "lacI"))
)

#> regulondb_result with 3 rows and 4 columns
#> posleft posright strand name
#> <integer> <integer> <character> <character>
#> 1  70387 71265 forward araC
#> 2  3486120  3486752 forward crp
#> 3  366428  367510 reverse lacI
```

Importantly, the result of each function is by default a regulondb object which keeps the slots from the original object.

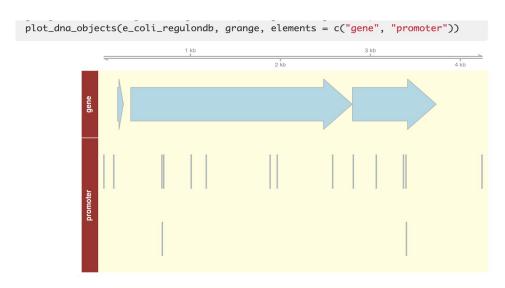
Extract and visualize regulatory networks

```
get_gene_regulators(e_coli_regulondb, c("araC", "fis", "crp"))
#> regulondb_result with 9 rows and 3 columns
         genes regulators
                          effect
    <character> <character> <character>
                     Fis
           crp
      fis
                     Fis
                     CRP
     araC
                CRP
      crp
       fis
                     CRP
          araC
                    AraC
                     Cra
         crp
          araC
                     XvlR
           fis
                     IHF
```


Search binding sites and retrieve them in multiple formats.

```
get_binding_sites(e_coli_regulondb, transcription_factor = "AraC")
#> GRanges object with 15 ranges and 1 metadata column:
#>
                            segnames
                                              ranges strand |
#>
                               <Rle>
                                           <IRanges> <Rle> /
     ECK120015742-araB-araC
                                         70110-70126
     ECK120012328-araB-araC
                                         70131-70147
     ECK120012320-araB-araC
                                 chr
                                         70184-70200
     ECK120012323-araB-araC
                                         70205-70221
     ECK120012603-araB-araC
                                         70342-70358
#>
#>
          ECK120012333-araF
                                 chr 1986396-1986412
          ECK120012915-araE
                                 chr 2982244-2982260
          ECK120012913-araE
                                 chr 2982265-2982281
          ECK125108641-xylA
                                 chr 3730824-3730840
         ECK125108643-xvlA
#>
                                 chr 3730847-3730863
#>
                                                         seauence
                                                      <character>
     ECK120015742-araB-araC ataaaaagcgTCAGGTAGGATCCGCTAatcttataga
     ECK120012328-araB-araC ccgctaatctTATGGATAAAAATGCTAtggcatagca
     ECK120012320-araB-araC tctataatcaCGGCAGAAAAGTCCACAttaattattt
     ECK120012323-araB-araC caaaaacqcqTAACAAAAGTGTCTATAatcacqqcaq
     ECK120012603-araB-araC attcagagaaGAAACCAATTGTCCATAttgcatcaga
#>
#>
          ECK120012333-araF ccaaagacaaCAAGGATTTCCAGGCTAatcttatgga
          ECK120012915-araE tccatatttaTGCTGTTTCCGACCTGAcacctacata
          ECK120012913-araE cgacatgtcqCAGCAATTTAATCCATAtttatqctqt
#>
          ECK125108641-xylA taacataattGAGCAACTGAAAGGGAGtgcccaatat
#>
          ECK125108643-xylA attatctcaaTAGCAGTGTGAAATAACataattgagc
```

```
get_binding_sites(e_coli_regulondb,
    transcription_factor = "AraC".
    output_format = "Biostrings")
    A DNAStringSet instance of length 15
        width sea
                                                                    names
            37 ATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGA
                                                                    ECK120015742-ara
B . . .
#> \[ \( \text{27} \)
            37 CCGCTAATCTTATGGATAAAAATGCTATGGCATAGCA
                                                                    ECK120012328-ara
#> \[ \int 37
                                                                    ECK120012320-ara
            37 TCTATAATCACGGCAGAAAAGTCCACATTGATTATTT
B...
#> \[ \( \frac{47}{} \)
           37 CAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAG
                                                                    ECK120012323-ara
B...
            37 ATTCAGAGAAGAAACCAATTGTCCATATTGCATCAGA
                                                                    ECK120012603-ara
           37 CCAAAGACAACAAGGATTTCCAGGCTAATCTTATGGA
#> [117]
                                                                    ECK120012333-ara
#> \[ 127
           37 TCCATATTTATGCTGTTTCCGACCTGACACCTGCGTG
                                                                    ECK120012915-ara
#> \[ 137
            37 CGACATGTCGCAGCAATTTAATCCATATTTATGCTGT
                                                                    ECK120012913-ara
#> \[ \square 147
                                                                    ECK125108641-xvl
            37 TAACATAATTGAGCAACTGAAAGGGAGTGCCCAATAT
#> \[ 157
            37 ATTATCTCAATAGCAGTGTGAAATAACATAATTGAGC
                                                                    ECK125108643-xyl
```


Things we learned

Joselyn:

- Modifying parameters into a function implies to run and sometimes update tests.
- Implementing Travis CI App (Thanks to Leo) makes a big difference to test code.
- It is better to write separate functions when we expect VERY different outputs.

That was how these two functions born

```
get_dna_objects(e_coli_regulondb, grange , elements = c("gene", "promoter"))
#> GRanges object with 19 ranges and 4 metadata columns:
         segnames ranges strand |
                                              id
                                                         type
             <Rle> <IRanges> <Rle> /
                                      <character> <character>
           E.coli 337-2799
                                 + | ECK120000987
                                                         gene
           E.coli 2801-3733
                                 + | ECK120000988
                                                        gene
                                 + | ECK120001251
           E.coli
                   190-255
                                                        gene
                        148
                                 + | ECK120010236
           E.coli
                                                     promoter
           E.coli
                                 + | ECK125230824
                                                     promoter
```


Integration with Gviz

Things we learned

Emiliano:

- Working on a coding project collaboratively using github, slack.
- Using R developer tools: devtools::test_coverage() makes writing unit tests a game.

Carmina:

Writing the code it's an important part of development but it's not all!

The experience of submitting regutools to Bioconductor

We used guidelines to know important facts about the submitting process like:

- There is a developers mail list.
- How to create a SSH key to Github.

But, the experience and guide from Leonardo and Alejandro was crucial to perform the submission process and understand build reports.

Feedback during review process

Some fixes:

- Keep just one maintainer.
- Remove the .Rproj file.
- Add the NEWS file.
- Adjust lines length and indentation.

Good comments:

R

- · Nicely done! Well written code.
- Try line wrapping certain functions to avoid the 80 chars per line NOTE on the build machine.

vignette

Good!

Thanks a lot Nitesh!

Current status of regutools

Almost done but dealing with a Warning in the R CMD check

Status: OK

WARNING: R CMD check exceeded 20 min requirement

Final thoughts

The development process has been very rewarding as a collaborative and learning experience.

We hope regutools will be a very useful tool for projects related with microbiological studies.