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What you will learn in this lecture

Motivating examples 

Multivariate classification: least squares, support vector 

Model complexity - ‘overfitting’ 

Cross-validation 

Kernel trick 

Regularisation, Lasso & Co. 

!
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Gene expression profiling for molecular classification of 
multiple myeloma in newly diagnosed patients



ARTICLES

Phenotypic profiling of the human genome
by time-lapse microscopy reveals cell
division genes
Beate Neumann1*, Thomas Walter1*, Jean-Karim Hériché5{, Jutta Bulkescher1, Holger Erfle1,3{,
Christian Conrad1,3, Phill Rogers1{, Ina Poser6, Michael Held1{, Urban Liebel1{, Cihan Cetin3, Frank Sieckmann8,
Gregoire Pau9, Rolf Kabbe10, Annelie Wünsche2, Venkata Satagopam4, Michael H. A. Schmitz7, Catherine Chapuis3,
Daniel W. Gerlich7, Reinhard Schneider4, Roland Eils10, Wolfgang Huber9, Jan-Michael Peters11,
Anthony A. Hyman6, Richard Durbin5, Rainer Pepperkok3 & Jan Ellenberg2

Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the
most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining
potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a
genome-wide phenotypic profiling of each of the ,21,000 human protein-coding genes by two-day live imaging of
fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which
allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and
survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes
the entire high-content data set available as a resource to the community.

To target the ,21,000 protein-coding genes in the human genome,
we used a chemically synthesized short interfering RNA (siRNA)
library designed to uniquely target each gene with 2–3 independent
sequences (Supplementary Methods). The siRNAs in this library
were tested individually and reduced the messenger RNAs of targeted
genes to below 30% of original levels (to an average of 13%) for 97%
of more than 1,000 genes tested (Supplementary Table 1). To allow
high-throughput phenotyping of each individual siRNA in triplicates
by live-cell imaging, we used a previously established workflow for
solid-phase transfection using siRNA microarrays coupled to auto-
matic time-lapse microscopy1. As a high-content phenotypic assay
we chose to monitor fluorescent chromosomes in a human cell line
stably expressing core histone 2B tagged with green fluorescent
protein (GFP)1. After seeding on the siRNA microarrays, on average
67 (630) cells for each siRNA of the library were imaged in triplicates
for 2 days, thus documenting many of their basic functions such as
cell division, proliferation, survival and migration.

Image processing reveals mitotic hits

This resulted in a large data set of ,190,000 time-lapse movies pro-
viding time-resolved records of over 19 million cell divisions. To auto-
matically score and annotate phenotypes in this large data set, we
developed a computational pipeline2 (Fig. 1) extending previously
established methods of morphology recognition by supervised

machine learning3–6. In brief, after segmentation, about 200 quantita-
tive features were extracted from each nucleus and used for classifica-
tion into one of 16 morphological classes (Fig. 1 and Supplementary
Movies 1–30) by a support vector machine classifier previously trained
on a set of ,3,000 manually annotated nuclei (Supplementary
Methods). This classifier automatically recognizes changes in nuclear
morphology due to the cell cycle, cell death or other phenotypic
changes with an overall accuracy of 87% (Supplementary Fig. 1) and
allows us to convert each time-lapse movie into a phenotypic profile
that quantifies the response to each siRNA (Fig. 1a). In addition, the
position of each nucleus is tracked over time. Using stringent signifi-
cance thresholds for each morphological class, nuclear mobility as well
as proliferation rate, significant and reproducible (majority of three or
more technical replicates) deviations caused by each siRNA are com-
puted (Fig. 1 and Supplementary Methods).

The key biological function that motivated this screen was mitosis,
studied systematically within the Mitocheck consortium. Cell division
phenotypes are rare and transient in human cell culture and are there-
fore typically missed in endpoint assays; however, they can be particu-
larly well detected by time-lapse microscopy1,7. In addition, live
imaging data reveal the primary defect and secondary consequences
of the phenotype and thereby allow a more precise interpretation of the
function of already identified genes. Despite genome-wide screening in
a number of model organisms7–9, candidate genes for key mitotic
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processes such as the restructuring or segregation of mitotic chromo-
somes remain to be discovered. To score an initial set of potential
mitotic genes identified reproducibly with at least one siRNA, 5 of
our 16 morphological classes describing chromosome configurations
were used (see Fig. 1 and Supplementary Methods). These classes
included early mitotic chromosome configurations such as ‘prometa-
phase’ and ‘metaphase alignment problems’ (MAP) that will be
enriched by delays or arrests in mitosis, and we therefore combined
these classes to score ‘mitotic arrest/delay’ phenotypes (we did not find
significant deviations in normal ‘metaphase’ or ‘anaphase’ classes and
therefore did not use these for scoring mitotic hits) (Fig. 1b). Also
included were morphological classes such as ‘polylobed’, exhibiting
multilobed nuclei, ‘grape’, exhibiting many micronuclei, as well as
‘binuclear’, representing cells with two nuclei (Fig. 1b). These three
classes specifically arise as a consequence of distinct problems during
mitotic exit including premature nuclear assembly, chromosome
segregation errors or cytokinesis failures. A total of 1,042 genes
deviated significantly from controls in one or more of these four
phenotypic groups (Fig. 1c). In addition, 207 genes below the stringent
significance thresholds of automatic scoring were identified by manual
annotation of the movies during training, quality control and thresh-
old evaluation (see Supplementary Methods). The combined 1,249
genes (Supplementary Table 2) are thus the potential mitotic hits from
this first pass genome-wide screen (Fig. 1c).

Validation of mitotic hits

Comparison of our potential hits with previously published RNA
interference (RNAi) screens that scored cell division is not suitable

for validation of our hit list, because the overlap between such screens
tends to be relatively low (in our case ranging between 6–36%) due to
poor comparability of the different screens (Supplementary Table 3).
To minimize the risk of reporting false positives, we therefore carried
out a second pass validation screen against 90% (1,128) of these genes
with two additional independent siRNAs. Combined with the results
from the first pass genome-wide screen, 46% (572 out of 1,249) of the
potential hits showed consistent phenotypes with two or more
siRNAs (Supplementary Table 4). This set of validated genes con-
tained 61% (41 out of 67) of a manually curated human gene set for
which a requirement for mitosis had already been established in low-
throughput RNAi experiments in HeLa cells with comparably spe-
cific mitotic assays (Supplementary Table 5). In addition, we also
carried out phenotypic complementation experiments for a subset
of the potential mitotic hits. To this end, the genomic copy of the
mouse orthologue was tagged with a combined localization and
affinity tag at the last exon in a bacterial artificial chromosome10,11,
and stably expressed under its endogenous promoter in the HeLa cell
strain used for the screen. Because of the DNA sequence divergence
between mouse and human, 89% of mouse genes are not targeted by
our siRNAs against human genes. We created 21 cell lines with such
RNAi-resistant BAC transgenes. In 12 (57%) of these lines the pheno-
type was fully complemented (Fig. 2 and Supplementary Table 6).
These rescues were specific as the mouse transgenes did not suppress
the knockdown of the endogenous human gene nor the phenotype of
siRNAs targeting other genes (Supplementary Fig. 2). Suppression of
the target genes was thus responsible for the phenotype. Phenotypes
were partially complemented in three (14%) additional cell lines and
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Figure 1 | Data analysis and hit detection. a, All nuclei in the 187,226
movies (each consisting in 92 images) are classified into 1 out of 16
predefined morphological classes. The workflow is illustrated for a RAD23A
RNAi experiment; for clarity, only four morphological classes are shown:
mitotic delay/arrest (prometaphase plus metaphase alignment problems
(MAP)), polylobed, grape and cell death. For each morphological class, the
score is defined as the maximal difference over time between the relative cell
count curve in one morphological class and the corresponding negative
control curve, averaged over eight scrambled siRNA experiments on the

same slide (shown for mitosis). b, 1,918,544,775 nuclei from all movies
(controls removed) classified into 16 different nuclei morphology classes.
Classes used for mitotic hit detection are underlined. c, Genome-wide score
distribution for the four classes used to detect potential mitotic hits—
mitotic delay/arrest (prometaphase plus MAP), binuclear, polylobed and
grape—automatically computed for all 51,810 siRNAs. Each siRNA is
considered as a potential mitotic hit if the median score of its replicates
exceeds a manually defined threshold (dotted lines) in at least one of the four
morphological classes.
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Morphological Phenotyping

§ Provide Human Annotation to a small set of  cells:

5

inter             pro         prometa       meta        earlyana      lateana         telo

Which mitotic phase? 

(Annotate automatically!)



Automatic Classification Workflow

6

Preprocessing 
e.g. normalization, background subtraction, …

Feature Extraction 
e.g. lightness, nucleus area, excentricity, …

Classification

Prophase Metaphase



Automatic Classification Workflow

6

Preprocessing 
e.g. normalization, background subtraction, …

Feature Extraction 
e.g. lightness, nucleus area, excentricity, …

Classification

Prophase Metaphase

Omics-based pathology 
Patient stratification  
Email - spam detection 
Credit cards - fraud 
Car insurance - rates 
....



Prophase/ Metaphase Classification

Predict mitotic state based 
on brightness

Predict mitotic state based 
on nucleus area

7

Decision boundary with 
lowest prediction error

None of  the two features individually has a good 
predictive power

Prophase Metaphase
Prophase Metaphase

hello

areabrightness



A Simple Least Squares Classifier: d=1

hello



A Simple Least Squares Classifier: d=1

Prophase

Metaphase

hello



A Simple Least Squares Classifier: d=1

Prophase

Metaphase

hello

decision boundary

y[i] = -1 for prophase!
y[i] = +1 for metaphase!
X[i,] = c(area[i],intensity[i])!
model = lm(y ~ X)!
ynew = predict(model, newdata=newX)!
ifelse(ynew < 0,-1,1)

Σi (yi - βxi)2 → min



A Simple Least Squares Classifier: d=2

8

y[i]=+1 for prophase!
y[i]=-1 for metaphase!
X[i,]=(area[i],lightness[i])!
model <- lm.fit(X,y)!
ynew <- predict(model,Xnew)!
           $fitted.values!
ifelse(ynew < 0,-1,1)

Prophase Metaphase
lightness

area



k-Nearest-Neighbor Classifier

9

Assign each new cell to the class of  its nearest 
neighbor. 
Black line shows decision boundary

y[i]=+1 for pro phase!
y[i]=-1 for meta phase!
X[i,]=(area[i],lightness[i])!
library(class)!
d = knn(X,Xnew,y,k=1)

Prophase Metaphase

area

lightness



Which Decision Boundary?
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Which decision boundary has 
the lowest 

prediction error?

High bias 
Low variance

Low bias 
High variance

high model complexity 
(needs hundreds of  parameter to  
describe the decision boundary)

low model complexity 
(needs 2 parameters to 
describe the decision boundary)



Bias-Variance-Dilemma

11



Cross-Validation 

§ cross validation is an easy & useful method to estimate the 
prediction error. 

§ data consist of n samples with d features and a known class 
label 

§ Method (m-fold cross-validation): 
• Split the data into m approximately equally sized subsets 
• Train the classifier on (m-1) subsets 
• Test the classifier on the remaining subset. Estimate the 

prediction error by comparing the predicted class label 
with the true class labels. 

• Repeat m times (i.e.: use each subset once as test set)

12
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Example: Two classes, two variables, 200 objects

x1

x2
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select k=5 or 6

cross-validation for k-nearest neighbours
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Classification 
result (k=5)

Demo: Cross-Validation for k-nearest neighbours



Least Squares Classifier
X: n x d matrix with d-dimensional features for n samples 
y: vector of length n:   yi = 0 for first class, 1 for second class 
Fit linear model by minimizing the squared error: 
!
!
	 

    model = lm.fit(X, y) 
 ynew = predict(model, Xnew)$fitted.values 
 ifelse(ynew < 0,-1,1)

!
Extension to k classes: 
Y an n x k indicator matrix; each row contains exactly one “1” 
at column j if the sample belongs to class j. All other entries 
are zero.  
     
In practice: lda (R-package MASS)

18

€ 

ˆ β = argmin
β

Xβ − y 2
2



Support Vector Machine

Find a separating hyperplane with maximal margin to the samples

19



Non-Linear Classifiers
These classes can not be separated by a straight line (hyperplane)

20



Feature Transformation

Transform the data with non-linear function, e.g.  

! !
  

Train linear classifier 

! in the transformed 

! feature space 

! !
    ➙ 

  

! !
   non-linear 

! classifier in the original feature space

21

  

€ 

f (x) = 1,x,x 2,x 3,…( )



Quadratic Extension
Parabolic decision boundaries can be achieved by using the product x1x2 

22



Rewrite the model such that the data X no longer appear directly, but 
only within scalar products. 
!
Example: least squares 
!
!
!
!
The least squares criterion can be reformulated as a scalar product. 
!
The matrix XXt (i.e. XikXkj) contains all scalar products. Replace it by 
       Kij = K(xi, xj)  

!
Implicit feature transformation. The kernel has to be positive semi-
definite. 
!

The Kernel Trick

CV etc.
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!
!
Popular choices 
!
Linear kernel:       
  

       
Radial basis functions: 
!
!
Polynomial kernel

The Kernel Trick
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€ 

K(xi,x j ) = xix j

€ 

K(xi,x j ) = exp − 1
2σ 2 xi − x j

$ 

% 
& 

' 

( 
) 

€ 

K(xi,x j ) = (xix j +1)d



SVM with 

Radial Basis Functions 

(RBF-kernel) 

!
!
!

Thick line: 

class separating 

hyperplane 

!
Thin line: 

margin 

!
Circles: 

support vectors

Examples for SVM-Classification

24



The Influence of  the Kernel Parameter 

25

€ 

γ = 0.001

€ 

γ = 0.03

€ 

γ = 0.005

€ 

γ = 0.1

€ 

γ =1

€ 

γ = 2

€ 

γ = 20

€ 

γ = 200

γ = σ-2, RBF



§ Consider: 

• 10 samples per class 

• Each sample is characterised by several hundred features. 

§ Even a linear classifier will be (always) too complex: overfitting 

§ There is a need to lower the complexity even below that of  the linear 

classifier

Curse of  Dimensionality: 
overfitting guaranteed

04/21/1226



§ Reduce the complexity by reducing the space of  permissible 

solutions for β

Regularization

04/21/1227

unconstrained 
least squares 
solution

constrain the solution 
of  β to the blue area

Lasso: Ridge Regression

€ 

ˆ β = argmin
β

Xβ − y 2
2

+ λ β 2
2

€ 

ˆ β = argmin
β

Xβ − y 2
2

+ λ β 1
1

Lagrangian formulation of  constrained optimization. 
The blue area becomes larger, the smaller λ. 
Lasso: sparse solution. Many coefficients βi become 0. Only a few 

coefficients are used for prediction. Implicitly selects features. 



Regularization Path

28

Lasso Ridge Regression

The coefficients for varying regularization parameter λ



Cross-Validation for Regularized 
Regression

04/21/1229



Summary: It’s all about adapting the 
complexity of  the model to that of  the data

High bias 
Low variance

Low bias 
High variance

high model complexity 
(hundreds of parameter to  
describe the decision boundary)

low model complexity 
(2 parameters describe the 
decision boundary)

Reduce complexity by regularization (Lasso, ridge, …) 
Increase complexity by feature transformation or kernel functions  
Always assess classifiers by cross-validation
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