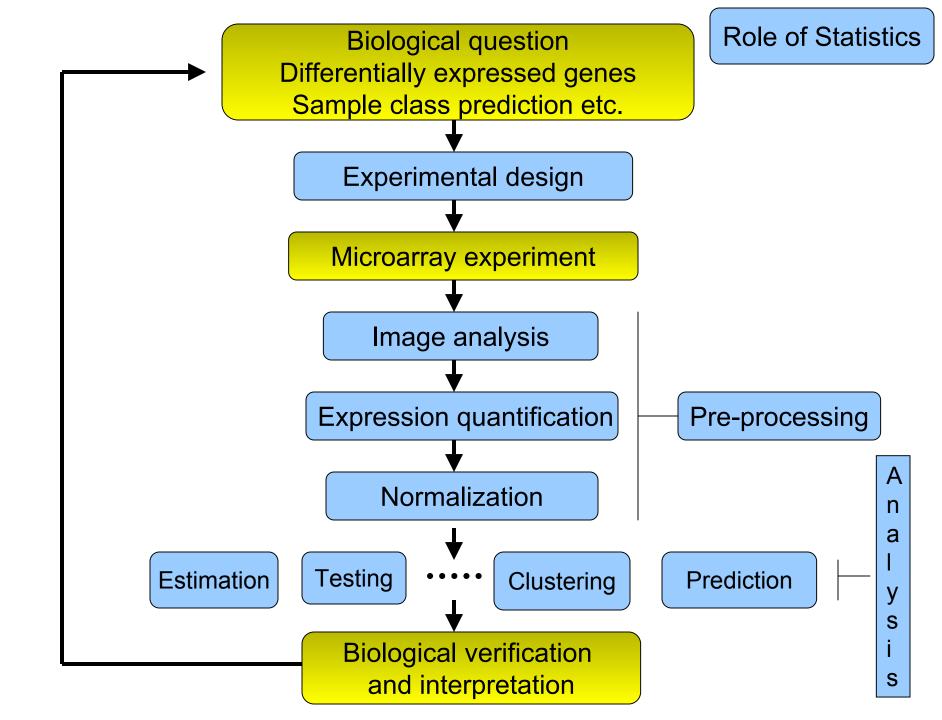
Annotation and Analysis

Sandrine Dudoit, Robert Gentleman, and Rafael Irizarry


Bioconductor Workshop JHMI Microarray Core Facility October 28-29, 2002

© Copyright 2002, all rights reserved

Acknowledgements

Bioconductor core team

- Ben Bolstad, Biostatistics, UC Berkeley
- Vincent Carey, Biostatistics, Harvard
- Francois Collin, GeneLogic
- Leslie Cope, JHU
- Laurent Gautier, Technical University of Denmark, Denmark
- Yongchao Ge, Statistics, UC Berkeley
- Robert Gentleman, Biostatistics, Harvard
- Jeff Gentry, Dana-Farber Cancer Institute
- John Ngai Lab, MCB, UC Berkeley
- Juliet Shaffer, Statistics, UC Berkeley
- **Terry Speed**, Statistics, UC Berkeley
- Yee Hwa (Jean) Yang, Biostatistics, UCSF
- Jianhua (John) Zhang, Dana-Farber Cancer Institute
- Spike-in and dilution datasets:
 - Gene Brown's group, Wyeth/Genetics Institute
 - **Uwe Scherf's group**, Genomics Research & Development, GeneLogic.
- GeneLogic and Affymetrix for permission to use their data.

Bioconductor packages Release 1.0, May 2nd, 2002

• General infrastructure:

Biobase, rhdf5, tkWidgets.

• Annotation:

annotate, AnnBuilder → data packages.

- Graphics: geneplotter.
- Pre-processing for Affymetrix oligonucleotide chip data: affy.
- Pre-processing for cDNA microarray data: marrayClasses, marrayInput, marrayNorm, marrayPlots.
- Differential gene expression:

```
edd, genefilter, multtest, ROC.
```

References

 Consult the slides from the Short Course, Statistical Methods and Software for the Analysis of DNA Microarray Experiments (Summer 2002),

www.bioconductor.org/workshops/Summer02Course/

for a more detailed discussion of preprocessing, experimental design, multiple testing, distances, cluster analysis, and classification

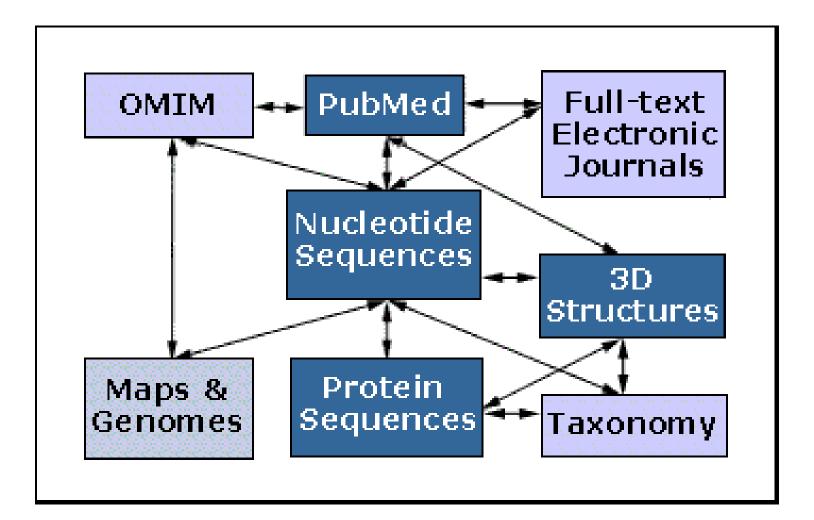
Outline

- annotate and AnnBuilder packages
- genefilter package
- multtest package
- R clustering and classification packages

Annotation packages

- One of the largest challenges in analyzing genomic data is associating the experimental data with the available metadata, e.g. sequence, gene annotation, chromosomal maps, literature.
- The annotate and AnnBuilder packages provides some tools for carrying this out.
- These are very likely to change, evolve and improve, so please check the current documentation - things may already have changed!

Annotation packages


- Annotation data packages;
- Matching IDs using environments;
- Searching and processing queries from WWW databases
 - LocusLink,
 - GenBank,
 - PubMed;
- HTML reports.

WWW resources

- Nucleotide databases: e.g. GenBank.
- Gene databases: e.g. LocusLink, UniGene.
- Protein sequence and structure databases:
 e.g. SwissProt, Protein DataBank (PDB).
- Literature databases: e.g. PubMed, OMIM.
- Chromosome maps: e.g. NCBI Map Viewer.
- Pathways: e.g. KEGG.
- Entrez is a search and retrieval system that integrates information from databases at NCBI (National Center for Biotechnology Information).

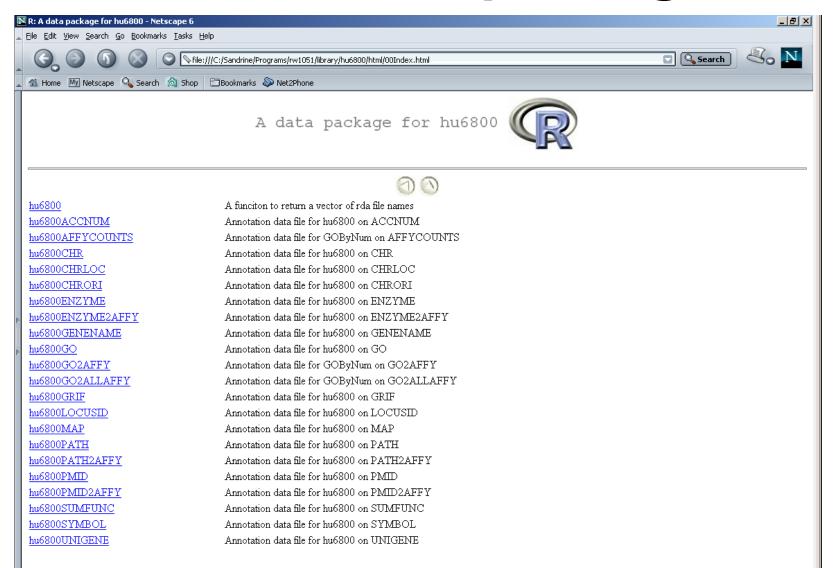
NCBI Entrez

www.ncbi.nlm.nih.gov/Entrez

Important tasks

- Associate manufacturers probe identifiers (e.g. Affymetrix IDs) to other available identifiers (e.g. gene symbol, PubMed PMID, LocusLink LocusID, GenBank accession number).
- Associate probes with biological data such as chromosomal position, pathways.
- Associate probes with published literature data via PubMed.

Affymetrix identifier HGU95A chips	~41046_s_at″
LocusLink, LocusID	``9203 <i>''</i>
GenBank accession #	``X95808″
Gene symbol	"ZNF261"
PubMed, PMID	<pre>``10486218" ``9205841" ``8817323"</pre>
Chromosomal location	"X", "Xq13.1"


Annotation data packages

- The Bioconductor project has started to deploy packages that contain only data.
 E.g. hgu95a package for Affymetrix HGU95A GeneChips series, also, hgu133a, hu6800, mgu74a, rgu34a.
- These data packages are built using **AnnBuilder**.
- These packages contain many different mappings to interesting data.
- They are available from the Bioconductor website and also using update.packages.

Annotation data packages

- Maps to GenBank accession number, LocusLink LocusID, gene symbol, gene name, UniGene cluster.
- Maps to chromosomal location: chromosome, cytoband, physical distance (bp), orientation.
- Maps to KEGG pathways, enzymes, Gene Ontology Consortium (GO).
- Maps to PubMed PMID.
- These packages will be updated and expanded regularly as new or updated data become available.

hu6800 data package

- Much of what annotate does relies on matching symbols.
- This is basically the role of a hash table in most programming languages.
- In R, we rely on environments (they are similar to hash tables).
- The annotation data packages provide R environment objects containing key and value pairs for the mappings between two sets of probe identifiers.
- Keys can be accessed using the R 1s function.
- Matching values in different environments can be accessed using the **get** or **multiget** functions.

E.g. hgu95a package.

- To load package library (hgu95a)
- For info on the package and list of mappings available
 - ? hgu95a

hgu95a()

- For info on a particular mapping
 - ? hgu95aPMID

> library(hgu95a) > get("41046 s at", env = hgu95aACCNUM) [1] "X95808" > get("41046 s at", env = hgu95aLOCUSID) [1] "9203" > get("41046 s at", env = hgu95aSYMBOL) [1] "ZNF261" > get("41046 s at", env = hgu95aGENENAME) [1] "zinc finger protein 261" > get("41046 s at", env = hgu95aSUMFUNC) [1] "Contains a putative zinc-binding motif (MYM) | Proteome" > get("41046 s at", env = hgu95aUNIGENE) [1] "Hs.9568"

> get("41046 s at", env = hgu95aCHR) [1] "X" > get("41046 s at", env = hgu95aCHRLOC) [1] "66457019@X" > get("41046 s at", env = hgu95aCHRORI) [1] "-@X" > get("41046 s at", env = hgu95aMAP) [1] "Xq13.1" > get("41046 s at", env = hgu95aPMID) [1] "10486218" "9205841" "8817323" > get("41046 s at", env = hgu95aGO)[1] "GO:0003677" "GO:0007275"

annotate: database searches and report generation

- Provide tools for searching and processing information from various biological databases.
- Provide tools for regular expression searching of PubMed abstracts.
- Provide nice HTML reports of analyses, with links to biological databases.

annotate: WWW queries

 Functions for querying WWW databases from R rely on the browseURL function

browseURL("www.r-project.org")

annotate: GenBank query

www.ncbi.nlm.nih.gov/Genbank/index.html

- Given a vector of GenBank accession numbers or NCBI UIDs, the genbank function
 - opens a browser at the URLs for the corresponding GenBank queries;
 - returns an **XMLdoc** object with the same data.

genbank("X95808",disp="browser")

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp="data",
 type="uid")

annotate: LocusLink query

www.ncbi.nlm.nih.gov/LocusLink/

 locuslinkByID: given one or more LocusIDs, the browser is opened at the URL corresponding to the first gene.

locuslinkByID("9203")

http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• **locuslinkQuery**: given a search string, the results of the LocusLink query are displayed in the browser.

locuslinkQuery("zinc finger")
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0

annotate: PubMed query

www.ncbi.nlm.nih.gov

- For any gene there is often a large amount of data available from PubMed.
- The **annotate** package provides the following tools for interacting with PubMed
 - pubMedAbst: a class structure for PubMed abstracts in R.
 - **pubmed**: the basic engine for talking to PubMed.
- WARNING: be careful you can query them too much and be banned!

annotate: pubMedAbst class

Class structure for storing and processing PubMed abstracts in R

- authors
- abstText
- articleTitle
- journal
- pubDate
- abstUrl

annotate: high level tools for PubMed query

- pm.getabst: download the specified PubMed abstracts (stored in XML) and create a list of pubMedAbst objects.
- **pm.titles**: extract the titles from a set of PubMed abstracts.
- pm.abstGrep: regular expression matching on the abstracts.

annotate: PubMed example

pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp="browser")</pre>

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst("41046_s_at", base="hgu95a")

pm.titles(absts)

pm.abstGrep("retardation",absts[[1]])

annotate: PubMed example

RGui - [R Console]				
R File Edit Misc Packages Windows Help				_ B ×
Slot "articleTitle": [1] "Prediction of the coding sequences of unidenti	fied human genes. VII.	The complete sequences of	of 100 new cDNA clones from brain whic	h can\$
Slot "journal": [1] "DNA Res"				
Slot "pubDate": [1] "Apr 1997"				
Slot "abstUrl": [1] "No URL Provided"				
[[3]] An object of class "pubMedAbst" Slot "authors": [1] "S M SM van der Maarel" "I H IH Scholten"	"I I Huber"	"C C Philippe"	"R F RF Suijkerbuijk"	
[6] "S S Gilgenkrantz" "J J Kere"	"F P FP Cremers"	"H H HH Ropers"		
Slot "abstText": [1] "In several families with non-specific X-linked	d mental retardation (X	LMR) linkage analyses hav	ve assigned the underlying gene defect	to t\$
Slot "articleTitle": [1] "Cloning and characterization of DXS6673E, a ca	andidate gene for X-lin	ked mental retardation in	n Xq13.1."	
Slot "journal": [1] "Hum Mol Genet"				
Slot "pubDate": [1] "Jul 1996"				
Slot "abstUrl": [1] "No URL Provided"				
> pm.titles(absts) [[1]]				
 "Cloning and mapping of members of the MYM fami [2] "Prediction of the coding sequences of unidenti 		The complete sequences (of 100 new cDNA clones from brain whic	\$ h can\$
[3] "Cloning and characterization of DXS6673E, a ca				\$
<pre>> pm.abstGrep("retardation",absts[[1]]) [1] TRUE FALSE TRUE ></pre>				-
D 1 5 1 A Longuage and Environment				

annotate: data rendering

- A simple interface, <u>ll.htmlpage</u>, can be used to generate an HTML report of your results.
- The page consists of a table with one row per gene, with links to LocusLink.
- Entries can include various gene identifiers and statistics.

BioConductor Gene Listing

Golub et al. data, genes with permutation maxT adjusted p-value < 0.01

Locus Link Genes

LocusID	Gene name	Chromosome	ALL mean	AML mean	t-statistic	raw p-value	adj p-value
7 <u>91</u>	X95735_at	7	-0.295	1.59	-10.6	2e-05	2e-05
<u>71</u>	M27891_at	20	-0.81	2.08	-9.78	2e-05	2e-05
<u>84</u>	M55150_at	15	0.488	1.24	-8.03	2e-05	0.00014
<u>067</u>	M16038_at	8	-0.284	1.1	-7.98	2e-05	0.00016
<u>34</u>	 L09209_s_at	11	-0.162	1.36	-7.97	2e-05	2e-04
<u>929</u>	M31523_at	19	0.855	-0.391	7.55	2e-05	5e-04
<u>928</u>	X74262_at	1	0.869	-0.565	7.42	2e-05	0.00078
<u>155</u>	Z15115_at	3	1.94	0.945	7.35	2e-05	0.001
<u>6999</u>	 L47738_at	5	0.734	-0.779	7.31	2e-05	0.00114
602	 U22376_cds2_s_at	6	1.86	0.294	7.28	2e-05	0.00116
<u>5108</u>	 HG1612-HT1612_at		1.91	0.888	7.11	2e-05	0.0017
4	 M91432_at	1	0.431	-0.771	7.08	2e-05	0.0018
925	 L41870_at	13	-0.438	-1.3	7.08	2e-05	0.0018
<u>46</u>	 U72936_s_at	NA	-0.097	-1.07	7.07	2e-05	0.0018
<u>430</u>	X51521_at	6	1.92	1.07	7.06	2e-05	0.00186
056		5	0.71	1.51	-6.97	2e-05	0.00232
<u>4741</u>	 Y12670_at	1	-0.167	0.892	-6.96	2e-05	0.00238
203	 X74801_at	1	0.611	-0.183	6.95	2e-05	0.00238
<u>576</u>	 Y00787_s_at	4	-0.371	2.32	-6.87	2e-05	0.00288
<u>'09</u>	J05243_at	9	0.413	-0.982	6.86	2e-05	0.00288
7 <u>25</u>	 U26266_s_at	19	-0.209	-1.16	6.85	4e-05	0.00294
205	 U82759_at	7	-0.64	0.504	-6.82	2e-05	0.00306
5	 M23197_at	19	-0.881	0.354	-6.79	2e-05	0.0033
509	 M63138_at	11	1.21	2.12	-6.77	2e-05	0.00344
9 <u>55</u>	 M12959_s_at	14	1.13	0.132	6.76	2e-05	0.00352
<u>57</u>	 X62654_ma1_at	12	0.0513	1.33	-6.76	2e-05	0.00352
<u>341</u>	 X07743_at	2	-0.959	0.535	-6.74	2e-05	0.00378
40465	 M31211_s_at	12	0.108	-0.953	6.71	2e-05	0.00404
<u>336</u>	U62136_at	8	-0.163	-0.92	6.68	2e-05	0.00428
<u>560</u>	 X15949_at	4	-0.541	-1.33	6.61	2e-05	0.00492
	1122014 -+	1.4	0.026	n 260	К К1	2. 05	0.00402

11.htmlpage
function from
annotate
package

4

genelist.html

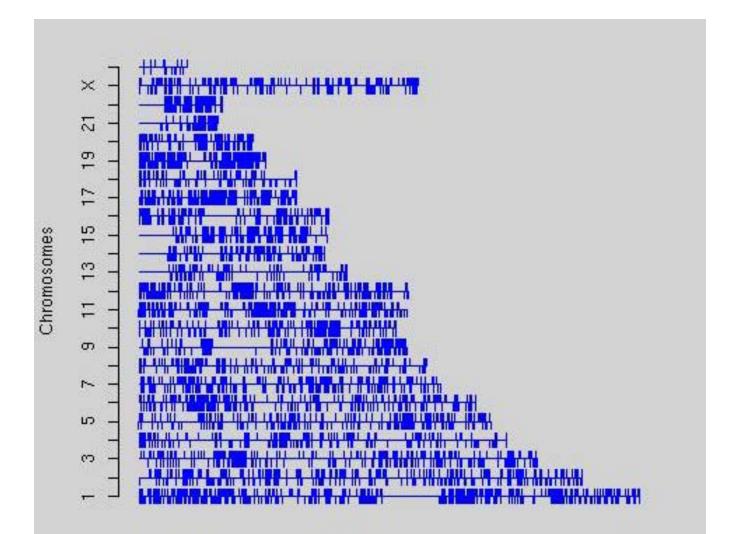
100%

đ

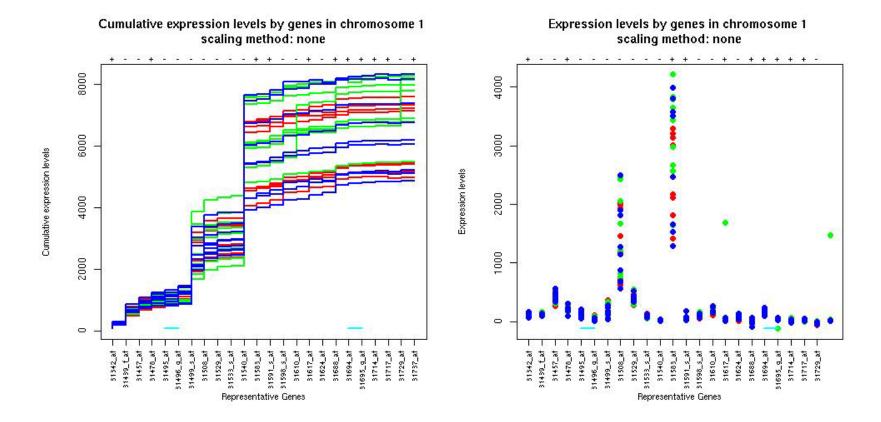
annotate: chromLoc class

Location information for <u>one gene</u>

- chrom: chromosome name.
- **position**: starting position of the gene in bp.
- **strand**: chromosome strand +/-.

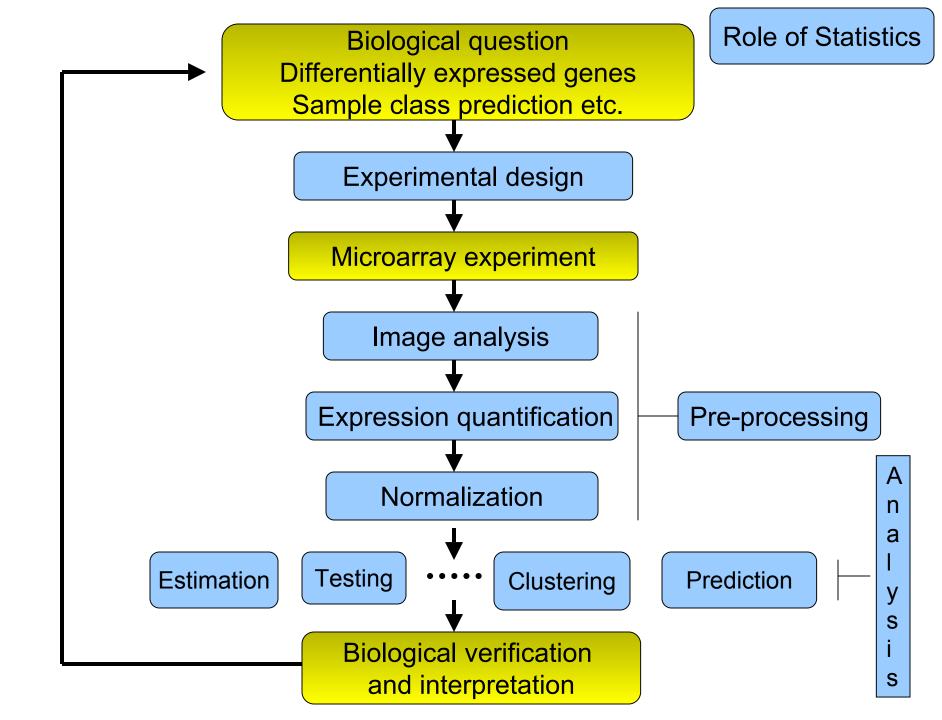

annotate: chromLocation class

Location information for a set of genes


- **species**: species that the genes correspond to.
- **datSource**: source of the gene location data.
- **nChrom**: number of chromosomes for the species.
- chromNames: chromosome names.
- **chromLocs**: starting position of the genes in bp.
- **chromLengths**: length of each chromosome in bp.
- **geneToChrom**: hash table translating gene IDs to location.

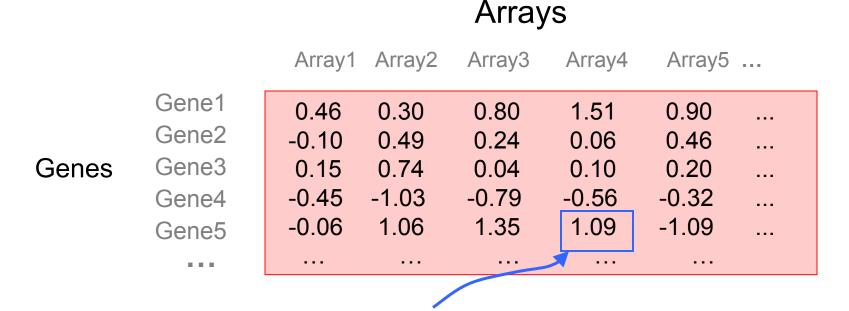
Function buildChromClass


geneplotter: cPlot



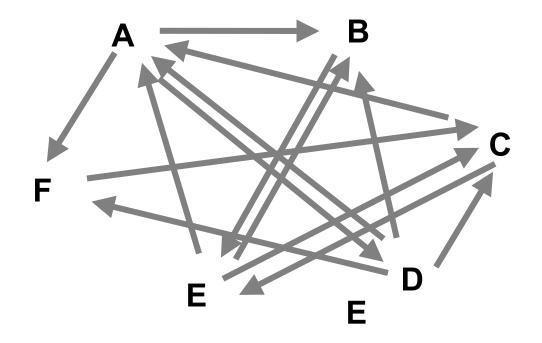
geneplotter: alongChrom

geneplotter: alongChrom



Combining data across arrays

Data on G genes for n arrays


G x n genes-by-arrays data matrix

M = log₂(Red intensity / Green intensity) expression measure, e.g. RMA.

Combining data across arrays


... but the columns have structure, determined by the experimental design.

Combining data across arrays

- cDNA array factorial experiment. Each column corresponds to a pair of mRNA samples with different drug x dose x time combinations.
- *Clinical trial.* Each column corresponds to a patient, with associated clinical outcome, such as survival and response to treatment.
- Linear models and extensions thereof can be used to effectively combine data across arrays for complex experimental designs.

Biobase: exprSet class

Gene filtering

- A very common task in microarray data analysis is gene-by-gene selection.
- Filter genes based on
 - data quality criteria, e.g. absolute intensity or variance;
 - subject matter knowledge;
 - their ability to differentiate cases from controls;
 - their spatial or temporal expression pattern.
- Depending on the experimental design, some highly specialized filters may be required and applied sequentially.

Gene filtering

- Clinical trial. Filter genes based on association with survival, e.g. using a Cox model.
- Factorial experiment. Filter genes based on interaction between two treatments, e.g. using 2-way ANOVA.
- *Time-course experiment*. Filter genes based on periodicity of expression pattern, e.g. using Fourier transform.

genefilter package

- The **genefilter** package provides tools to sequentially apply filters to the rows (genes) of a matrix.
- There are two main functions, filterfun and genefilter, for assembling and applying the filters, respectively.
- Any number of functions for specific filtering tasks can be defined and supplied to filterfun.

E.g. Cox model p-values, coefficient of variation.

genefilter: separation of tasks

- 1. Select/define functions for specific filtering tasks.
- 2. Assemble the filters using the **filterfun** function.
- 3. Apply the filters using the **genefilter** function \rightarrow a logical vector, **TRUE** indicates genes that are retained.
- 4. Apply that vector to the exprSet to obtain a microarray object for the subset of interesting genes.

genefilter: supplied filters

Filters supplied in the package

- kOverA select genes for which k samples have expression measures larger than A.
- gapFilter select genes with a large IQR or gap (jump) in expression measures across samples.
- ttest select genes according to t-test nominal pvalues.
- Anova select genes according to ANOVA nominal p-values.
- coxfilter select genes according to Cox model nominal p-values.

genefilter: writing filters

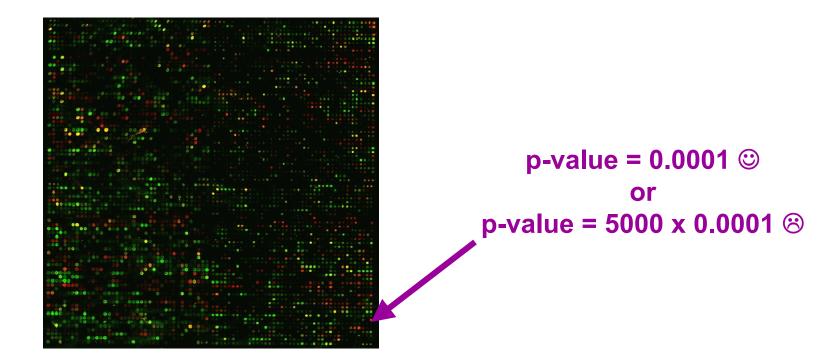
- It is very simple to write your own filters.
- You can use the supplied filtering functions as templates.
- The basic idea is to rely on lexical scope to provide values (bindings) for the variables that are needed to do the filtering.

genefilter: How to?

- 1. First, build the filters
 - f1 <- anyNA

f2 <- kOverA(5, 100)

- 2. Next, assemble them in a filtering function
 ff <- filterfun(f1,f2)</pre>
- 3. Finally, apply the filter
 wh <- genefilter(exprs(DATA), ff)</pre>
- 4. Use **wh** to obtain the relevant subset of the data


```
mySub <- DATA[wh,]</pre>
```

Differential gene expression

- Identify genes whose expression levels are associated with a response or covariate of interest
 - clinical outcome such as survival, response to treatment, tumor class;
 - covariate such as treatment, dose, time.
- Estimation: estimate effects of interest and variability of these estimates.

E.g. slope, interaction, or difference in means in a linear model.

 Testing: assess the statistical significance of the observed associations.

- When testing for each gene the null hypothesis of no differential expression, e.g. using a t- or F-statistic, two types of errors can be committed.
- Type I error or false positive
 - say that a gene is differentially expressed when it is not,
 - reject a *true null* hypothesis.
- Type II error or false negative
 - fail to identify a truly differentially expressed gene,
 - fail to reject a *false null* hypothesis.

- Large multiplicity problem: thousands of hypotheses are tested simultaneously!
 - Increased chance of false positives.
 - E.g. chance of at least one p-value < α for G independent tests is $1-(1-\alpha)^G$

and converges to one as G increases.

For G=1,000 and α = 0.01, this chance is 0.9999568!

- Individual p-values of 0.01 no longer correspond to significant findings.
- Need to adjust for multiple testing when assessing the statistical significance of the observed associations.

- Define an appropriate Type I error or false positive rate.
- Develop multiple testing procedures that
 - provide strong control of this error rate,
 - are powerful (few false negatives),
 - take into account the joint distribution of the test statistics.
- Report adjusted p-values for each gene which reflect the overall Type I error rate for the experiment.
- Resampling methods are useful tools to deal with the unknown joint distribution of the test statistics.

Non-rejected hypotheses Rejected hypotheses

G-R

Type I error rates

• Per-family error rate (PFER). Expected number of false positives, i.e.,

PFER = E(V).

 Per-comparison error rate (PCER). Expected value of (# false positives / # of hypotheses), i.e.,

PCER = E(V)/G.

• Family-wise error rate (FWER). Probability of at least one false positive, i.e.,

FWER = p(V > 0).

Type I error rates

 False discovery rate (FDR). The FDR of Benjamini & Hochberg (1995) is the expected proportion of false positives among the rejected hypotheses, i.e., FDR = E(Q),

where by definition

Q = V/R, if R > 0, 0, if R = 0.

Strong control

- N.B. Expectations and probabilities above are conditional on which hypotheses are true.
- Strong control. Control of the Type I error rate under any combination of true and false hypotheses.
- Weak control. Control of the Type I error rate under only the complete null hypothesis, i.e., when all null hypotheses are true.
- Strong control is essential in microarray experiments.

Comparison of error rates

• In general, for a given multiple testing procedure,

$PCER \leq FWER \leq PFER$

and

$FDR \leq FWER$

with FDR = FWER under the complete null.

Thus, for a fixed criterion α for controlling the Type I error rates, the order reverses for the number of rejected hypotheses R: procedures controlling the FWER are generally more conservative than those controlling either the FDR or PCER.

Adjusted p-values

- Given any test procedure, the adjusted pvalue for a single gene g can be defined as the nominal level of the entire test procedure at which gene g would just be declared differentially expressed.
- Adjusted p-values reflect for each gene the overall experiment Type I error rate when genes with a smaller p-value are declared differentially expressed.
- Can be estimated by resampling, e.g. permutation or bootstrap.

Multiple testing procedures

- Strong control of FWER
 - Bonferroni: single-step;
 - Holm (1979): step-down;
 - Hochberg (1986)*: step-up;
 - Westfall & Young (1993): step-down maxT and minP, exploit *joint* distribution of test statistics.
- Strong control of FDR
 - Benjamini & Hochberg (1995)*: step-up;
 - Benjamini & Yekutieli (2001): step-up.

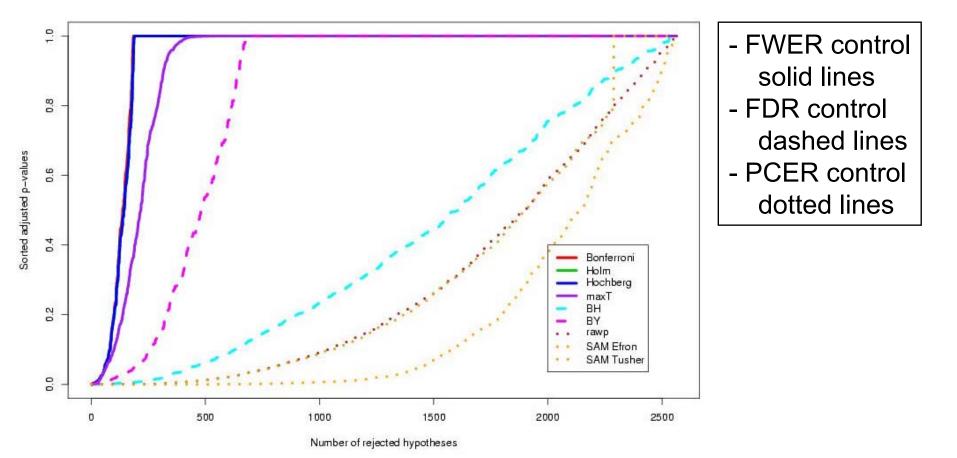
*some distributional assumptions required.

Multiple testing procedures

- Golub et al. (1999): neighborhood analysis
 - weak control only, problematic definition of error rate.
- Tusher et al. (2001): SAM
 - t- or F-like statistics;
 - similar to univariate test with asymmetric cut-offs;
 - permutation procedure controlling PCER;
 - the SAM estimate of the FDR is $E_0(V)/R$ --- can be greater than one.

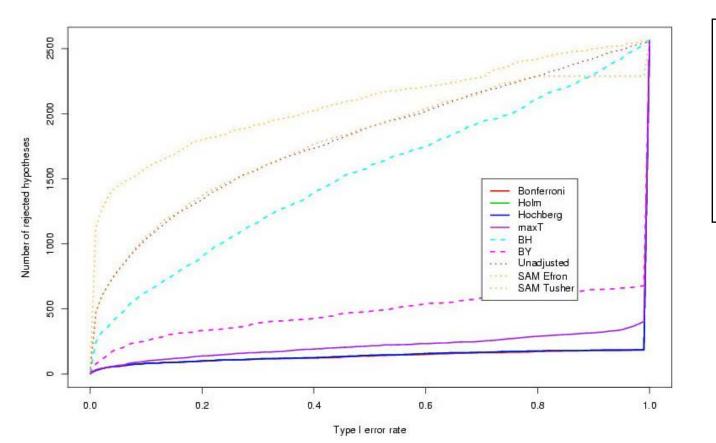
multtest package

- Multiple testing procedures for controlling
 - Family-Wise Error Rate FWER: Bonferroni, Holm (1979), Hochberg (1986), Westfall & Young (1993) maxT and minP;
 - False Discovery Rate FDR: Benjamini & Hochberg (1995), Benjamini & Yekutieli (2001).
- Tests based on t- or F-statistics for one- and two-factor designs.
- Permutation procedures for estimating adjusted pvalues.
- Fast permutation algorithm for minP adjusted p-values.
- Documentation: tutorial on multiple testing.


Reporting the results of multiple testing procedures

Plots for adjusted p-values

- allow investigators to examine various false positive rates (FWER, FDR or PCER) associated with different gene lists;
- do not require researchers to preselect a particular definition of Type I error rate or αlevel;
- provide tools for deciding on an appropriate combination of number of genes and tolerable false positive rate for a particular experiment and available resources.


multtest package

Sorted adjusted p-values for different multiple testing procedures Golub et al. (1999) ALL AML data

multtest package

Number of rejected hypotheses vs. false positive rate Golub et al. (1999) ALL AML data

 FWER control solid lines
 FDR control dashed lines

- PCER control dotted lines

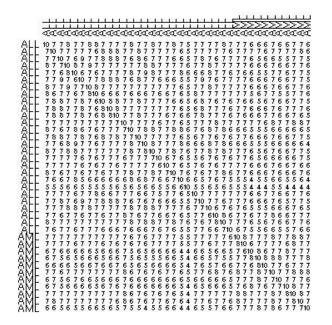
Reporting the results of multiple testing procedures

- Select a number r of genes which you feel comfortable following up and read from the plot the corresponding nominal false positive rates (PCER, FDR, FWER) under various types of error control and testing procedures.
- Find the number of hypotheses that would be rejected using a procedure controlling the FWER at a fixed level, and identify how many others would be rejected using procedures controlling the FDR and PCER at that level.
- Find the number of hypotheses that would be rejected under one procedure, and read the level required to achieve that number under other methods.

Clustering vs. classification

- Cluster analysis a.k.a. unsupersived learning
 - the classes are unknown a priori;
 - the goal is to discover these classes from the data.
- Classification a.k.a. supervised learning, class prediction
 - the classes are predefined;
 - the goal is to understand the basis for the classification from a set of labeled objects and build a predictor for future unlabeled observations.

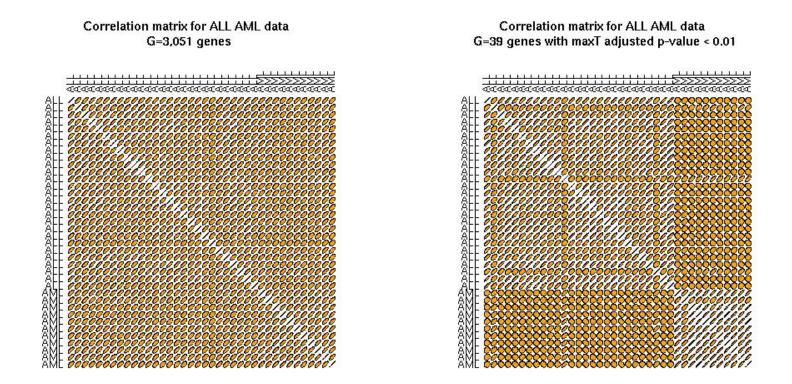
Distances


- Microarray data analysis often involves
 - clustering genes or samples;
 - classifying genes or samples.
- Both types of analyses are based on a measure of distance (or similarity) between genes or samples.
- R has a number of functions for computing and plotting distance and similarity matrices.

Distances

- Distance functions
 - dist (mva): Euclidean, Manhattan, Canberra, binary;
 - daisy (cluster).
- Correlation functions
 - cor, cov.wt.
- Plotting functions
 - image;
 - plotcorr (ellipse);
 - plot.cor, plot.mat (sma).

Correlation matrices


Correlation matrix for ALL AML data G=3,051 genes

Correlation matrix for ALL AML data G=39 genes with maxT adjusted p-value < 0.01


plotcorr function from ellipse package

Correlation matrices

plotcorr function from ellipse package

Correlation matrices

plot.cor function from sma package

Multidimensional scaling

- Given any n x n dissimilarity matrix D = (d_{ij}) , multidimensional scaling (MDS) is concerned with identifying n points in Euclidean space with a similar distance structure D'= (d_{ii}) .
- The purpose is to provide a low(er) dimensional representation of the distances which conveys information on the relationships between the n objects, such as the existence of clusters or one-dimensional structure in the data (e.g., seriation).

MDS

- There are different approaches for reducing dimensionality, depending on how we define similarity between the old and new dissimilarity matrices for the n objects, i.e., depending on the objective or stress function S that we seek to minimize.
 - Least-squares scaling $S(D,D') = \left(\sum (d_{ij} d'_{ij})^2\right)^{1/2}$
 - Samming mapping $S(D,D') = \sum (d_{ij} d'_{ij})^2 / d_{ij}$ places more emphasis on smaller dissimilarities (and hence should be preferred for clustering methods).
 - Shepard-Kruskal non-metric scaling is based on ranks, i.e., the order of the distances is more important than their actual values.

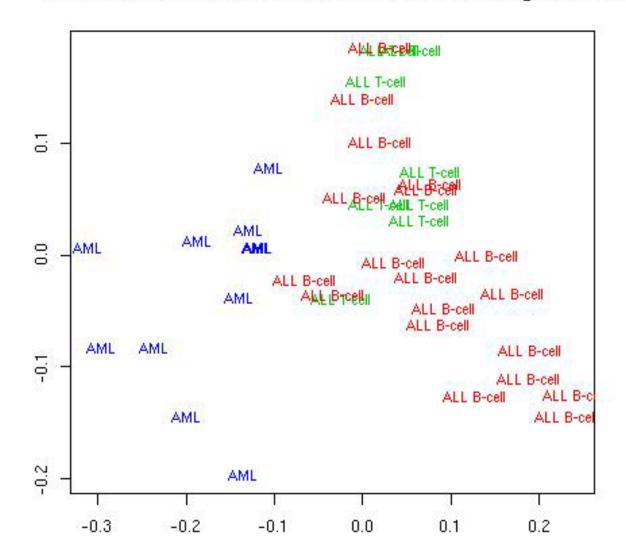
MDS and PCA

- When the distance matrix D is the Euclidean distance matrix between the rows of an n x m matrix X, there is a duality between principal component analysis (PCA) and MDS.
- The k-dimensional classical solution to the MDS problem is given by the centered scores of the n objects on the first k principal components.
- The classical solution of MDS in k-dimensional space minimizes the sum of squared differences between the entries of the new and old dissimilarity matrices, i.e., is optimal for least-squares scaling.

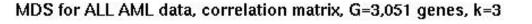
MDS

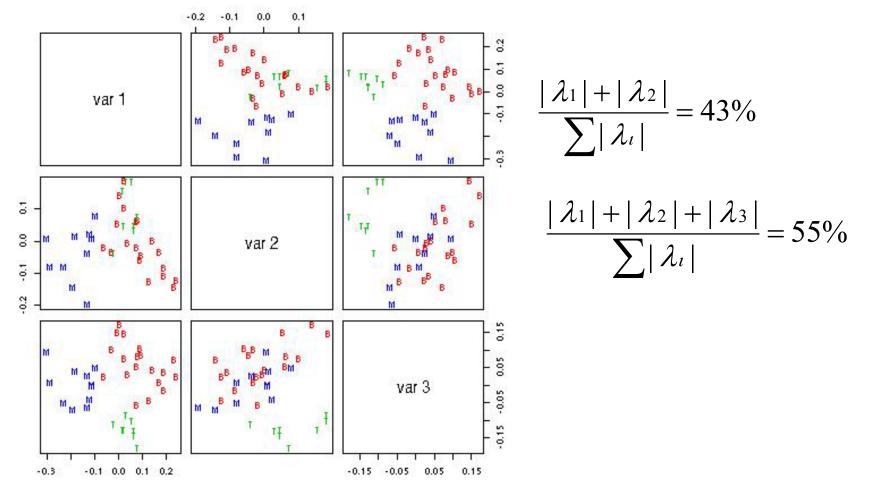
- As with PCA, the quality of the representation will depend on the magnitude of the first k eigenvalues.
- The data analyst should choose a value for k that is small enough for ease representation but also corresponds to a substantial "proportion of the distance matrix explained".

MDS


- N.B. The MDS solution reflects not only the choice of a distance function, but also the features selected.
- If features were selected to separate the data into two groups (e.g., on the basis of twosample t-statistics), it should come as no surprise that an MDS plot has two groups. In this instance MDS is not a confirmatory approach.

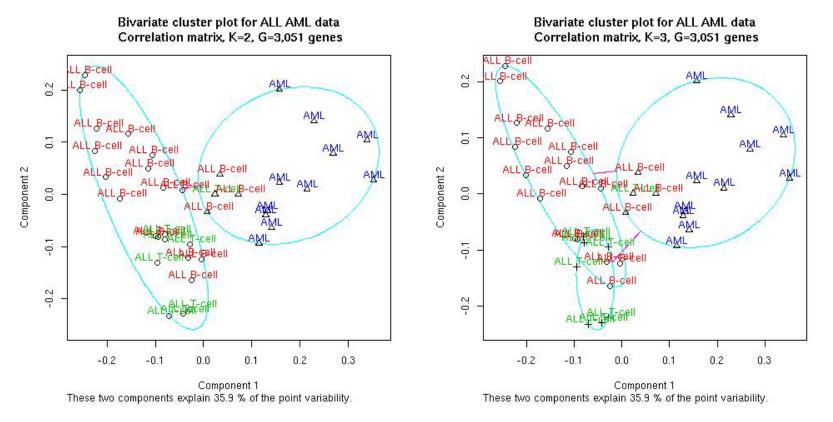
R MDS software


- cmdscale: Classical solution to MDS, in package mva.
- sammon: Sammon mapping, in package MASS.
- **isoMDS**: Kruskal's non-metric MDS, in package **MASS**.


Classical MDS

MDS for ALL AML data, correlation matrix, G=3,051 genes, k=2

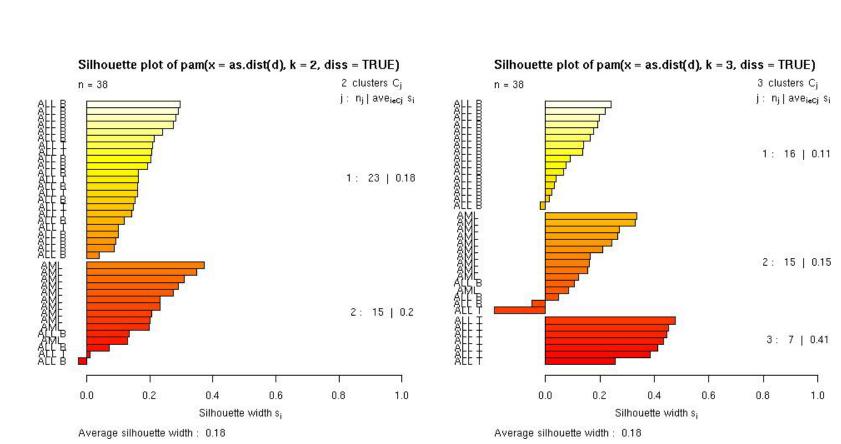
Classical MDS


Cluster analysis packages

- **class**: self organizing maps (SOM).
- cluster:
 - AGglomerative NESting (agnes),
 - Clustering LARe Applications (clara),
 - Divisive ANAlysis (diana),
 - Fuzzy Analysis (fanny),
 - MONothetic Analysis (mona),
 - Partitioning Around Medoids (pam).
- e1071:
 - fuzzy C-means clustering (cmeans),
 - bagged clustering (bclust).
- mva:
 - hierarchical clustering (hclust),
 - k-means (**kmeans**).
- Specialized summary, plot, and print methods for clustering results.

pam

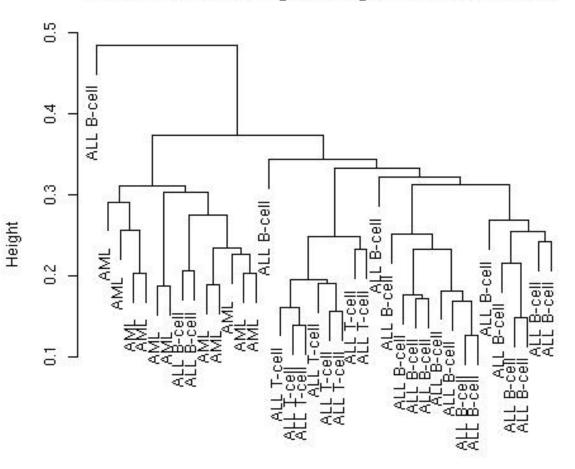
K=2



pam and clusplot functions from cluster package

pam

K=2


K=3

pam and plot functions from cluster package

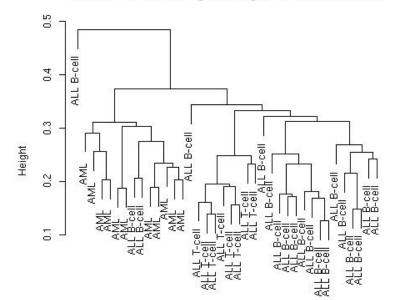
hclust

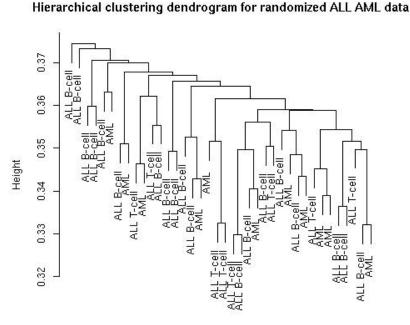
Hierarchical clustering dendrogram for ALL AML data

hclust function from mva package

as.dist(d) Average linkage, correlation matrix, G=3,051 genes

- N.B. While dendrograms are quite appealing because of their apparent ease of interpretation, they can be misleading.
- First, the dendrogram corresponding to a given hierarchical clustering is not unique, since for each merge one needs to specify which subtree should go on the left and which on the right ---- there are 2^(n-1) choices.
- The default in the R function hclust is to order the subtrees so that the tighter cluster is on the left.


- Second, they *impose* structure on the data, instead of *revealing* structure in these data.
- Such a representation will be valid only to the extent that the pairwise dissimilarities possess the hierarchical structure imposed by the clustering algorithm.


- The cophenetic correlation coefficient can be used to measure how well the hierarchical structure from the dendrogram represents the actual distances.
- This measure is defined as the correlation between the n(n-1)/2 pairwise dissimilarities between observations and their cophenetic dissimilarities from the dendrogram, i.e., the between cluster dissimilarities at which two observations are first joined together in the same cluster.
- Function cophenetic in mva package.

Original data, coph corr = 0.74

Randomized data (perm. wi features), coph corr = 0.57

Hierarchical clustering dendrogram for ALL AML data

as.dist(d) Average linkage, correlation matrix, G=3,051 genes

as.dist(d0) Average linkage, correlation matrix, G=3,051 genes

Classification

• Predict a biological outcome on the basis of observable features.

- **Outcome**: tumor class, type of bacterial infection, survival, response to treatment.
- Features: gene expression measures, covariates such as age, sex.

Classification

- Old and extensive literature on classification, in statistics and machine learning.
- Examples of classifiers
 - nearest neighbor classifiers (k-NN);
 - discriminant analysis: linear, quadratic, logistic;
 - neural networks;
 - classification trees;
 - support vector machines.
- Aggregated classifiers: bagging and boosting.
- Comparison on microarray data: simple classifiers like k-NN and naïve Bayes perform remarkably well.

Performance assessment

- Classification error rates, or related measures, are usually reported
 - to compare the performance of different classifiers;
 - to support statements such as "clinical outcome X for cancer Y can be predicted accurately based on gene expression measures".
- Classification error rates can be estimated by resampling, e.g. bootstrap or cross-validation.

Performance assessment

 It is essential to take into account feature selection and other training decisions in the error rate estimation process.

E.g. number of neighbors in k-NN, kernel in SVMs.

 Otherwise, error estimates can be severely biased downward, i.e., overly optimistic.

Important issues

- Standardization;
- Distance function;
- Feature selection;
- Loss function;
- Class priors;
- Binary vs. polychotomous classification.

Classification packages

• class:

- k-nearest neighbor (knn),
- learning vector quantization (1vq).
- e1071: support vector machines (svm).
- **ipred**: bagging, resampling based estimation of prediction error.
- LogitBoost: boosting for tree stumps.
- MASS: linear and quadratic discriminant analysis (1da, qda).
- **mlbench**: machine learning benchmark problems.
- **nnet**: feed-forward neural networks and multinomial log-linear models.
- ranForest, RanForests: random forests.
- **rpart**: classification and regression trees.
- **sma**: diagonal linear and quadratic discriminant analysis, naïve Bayes (**stat.diag.da**).