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Bioconductor packages
Release 1.0, May 2nd, 2002

• General infrastructure:
Biobase, rhdf5, tkWidgets.

• Annotation:
annotate, AnnBuilderÆ data packages.

• Graphics: 
geneplotter.

• Pre-processing for Affymetrix oligonucleotide chip data: 
affy.

• Pre-processing for cDNA microarray data: 
marrayClasses, marrayInput, marrayNorm, 
marrayPlots.

• Differential gene expression: 
edd, genefilter, multtest, ROC.



References
• Consult the slides from the Short Course, 

Statistical Methods and Software for the 
Analysis of DNA Microarray Experiments
(Summer 2002),
www.bioconductor.org/workshops/Summer02Course/
for a more detailed discussion of pre-
processing, experimental design, multiple 
testing, distances, cluster analysis, and 
classification



Outline
• annotate and AnnBuilder packages

• genefilter package

• multtest package

• R clustering and classification packages



Annotation packages
• One of the largest challenges in analyzing 

genomic data is associating the experimental 
data with the available metadata, e.g. 
sequence, gene annotation, chromosomal 
maps, literature.

• The annotate and AnnBuilder packages 
provides some tools for carrying this out.

• These are very likely to change, evolve and 
improve, so please check the current 
documentation - things may already have 
changed!



Annotation packages 
• Annotation data packages;
• Matching IDs using environments;
• Searching and processing queries from 

WWW databases
– LocusLink,
– GenBank,
– PubMed;

• HTML reports.



WWW resources
• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene. 
• Protein sequence and structure databases: 

e.g. SwissProt, Protein DataBank (PDB). 
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that 

integrates information from databases at NCBI 
(National Center for Biotechnology Information).



NCBI Entrez
www.ncbi.nlm.nih.gov/Entrez



annotate: matching IDs
Important tasks
• Associate manufacturers probe identifiers 

(e.g. Affymetrix IDs) to other available 
identifiers (e.g. gene symbol, PubMed PMID, 
LocusLink LocusID, GenBank accession 
number).

• Associate probes with biological data such as 
chromosomal position, pathways.

• Associate probes with published literature 
data via PubMed.



annotate: matching IDs

“X”, “Xq13.1”Chromosomal location

“10486218” 
“9205841” 
“8817323”

PubMed, PMID

“ZNF261”Gene symbol

“X95808”GenBank accession #

“9203”LocusLink, LocusID

“41046_s_at”Affymetrix identifier
HGU95A chips



Annotation data packages
• The Bioconductor project has started to 

deploy packages that contain only data. 
E.g. hgu95a package for Affymetrix
HGU95A GeneChips series, also, hgu133a, 
hu6800, mgu74a, rgu34a. 

• These data packages are built using 
AnnBuilder.

• These packages contain many different 
mappings to interesting data.

• They are available from the Bioconductor
website and also using update.packages.



Annotation data packages
• Maps to GenBank accession number, 

LocusLink LocusID, gene symbol, gene 
name, UniGene cluster.

• Maps to chromosomal location: chromosome, 
cytoband, physical distance (bp), orientation.

• Maps to KEGG pathways, enzymes, Gene 
Ontology Consortium (GO).

• Maps to PubMed PMID.
• These packages will be updated and 

expanded regularly as new or updated data 
become available.



hu6800 data package



annotate: matching IDs
• Much of what annotate does relies on matching 

symbols.
• This is basically the role of a hash table in most 

programming languages.
• In R, we rely on environments (they are similar to 

hash tables).
• The annotation data packages provide R 

environment objects containing key and value pairs 
for the mappings between two sets of probe 
identifiers. 

• Keys can be accessed using the R ls function.
• Matching values in different environments can be 

accessed using the get or multiget functions. 



E.g. hgu95a package.
• To load package library(hgu95a)
• For info on the package and list of mappings 

available
? hgu95a
hgu95a()

• For info on a particular mapping
? hgu95aPMID

annotate: matching IDs



annotate: matching IDs 
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808”
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203”
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding 
motif (MYM)|Proteome"

> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"



annotate: matching IDs
> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1”
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841"  "8817323" 
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"



• Provide tools for searching and 
processing information from various 
biological databases.

• Provide tools for regular expression 
searching of PubMed abstracts.

• Provide nice HTML reports of analyses, 
with links to biological databases.

annotate: database searches 
and report generation



annotate: WWW queries

• Functions for querying WWW 
databases from R rely on the 
browseURL function

browseURL("www.r-project.org")



annotate: GenBank query
www.ncbi.nlm.nih.gov/Genbank/index.html

• Given a vector of GenBank accession 
numbers or NCBI UIDs, the genbank
function 
– opens a browser at the URLs for the 

corresponding GenBank queries;
– returns an XMLdoc object with the same data.

genbank(“X95808”,disp=“browser”)
http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp=“data”,
type=“uid”)



annotate: LocusLink query
www.ncbi.nlm.nih.gov/LocusLink/

• locuslinkByID: given one or more LocusIDs, the 
browser is opened at the URL corresponding to the 
first gene.

locuslinkByID(“9203”)
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• locuslinkQuery: given a search string, the results 
of the LocusLink query are displayed in the browser.

locuslinkQuery(“zinc finger”)
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0



annotate: PubMed query
www.ncbi.nlm.nih.gov

• For any gene there is often a large amount of 
data available from PubMed.

• The annotate package provides the 
following tools for interacting with PubMed
– pubMedAbst: a class structure for PubMed

abstracts in R.
– pubmed: the basic engine for talking to PubMed.

• WARNING: be careful you can query them 
too much and be banned!



annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R
• authors
• abstText
• articleTitle
• journal
• pubDate
• abstUrl



annotate: high level tools for 
PubMed query

• pm.getabst: download the specified 
PubMed abstracts (stored in XML) and 
create a list of pubMedAbst objects.

• pm.titles: extract the titles from a set 
of PubMed abstracts.

• pm.abstGrep: regular expression 
matching on the abstracts.



annotate: PubMed example
pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp=“browser”)

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie
ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst(“41046_s_at”, 
base=“hgu95a”)

pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])



annotate: PubMed example



annotate: data rendering

• A simple interface, ll.htmlpage, can 
be used to generate an HTML report of 
your results.

• The page consists of a table with one 
row per gene, with links to LocusLink. 

• Entries can include various gene 
identifiers and statistics.



genelist.html

ll.htmlpage 
function from
annotate 
package



annotate: chromLoc class

Location information for one gene
• chrom: chromosome name.
• position: starting position of the gene 

in bp.
• strand: chromosome strand +/-.



annotate: chromLocation
class

Location information for a set of genes
• species: species that the genes correspond to.
• datSource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chromNames: chromosome names.
• chromLocs: starting position of the genes in bp.
• chromLengths: length of  each chromosome in bp.
• geneToChrom: hash table translating gene IDs to 

location.

Function buildChromClass



geneplotter: cPlot



geneplotter: alongChrom



geneplotter: alongChrom
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Combining data across arrays

Genes

Arrays

M = log2( Red intensity / Green intensity)
expression measure, e.g. RMA.

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
…           …           …           …           …

Data on G genes for n arrays

Array1   Array2     Array3      Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…



Combining data across arrays

… but the columns have structure, 
determined by the experimental design.

E
D

F

BA

C

E



Combining data across arrays

• cDNA array factorial experiment. Each 
column corresponds to a pair of mRNA 
samples with different drug x dose x time 
combinations.

• Clinical trial. Each column corresponds to a 
patient, with associated clinical outcome, 
such as survival and response to treatment.

• Linear models and extensions thereof can 
be used to effectively combine data across 
arrays for complex experimental designs.



Biobase: exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures

Sample level covariates, instance of class phenoData 

Name of annotation data 

Object of class MIAME

se.exprs

exprs

notes



Gene filtering
• A very common task in microarray data 

analysis is gene-by-gene selection. 
• Filter genes based on

– data quality criteria, e.g. absolute intensity or 
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some 
highly specialized filters may be required and 
applied sequentially.



Gene filtering
• Clinical trial. Filter genes based on 

association with survival, e.g. using a Cox 
model.

• Factorial experiment. Filter genes based on 
interaction between two treatments, e.g. 
using 2-way ANOVA.

• Time-course experiment. Filter genes based 
on periodicity of expression pattern, e.g. 
using Fourier transform.



• The genefilter package provides tools to 
sequentially apply filters to the rows (genes) 
of a matrix.

• There are two main functions, filterfun
and genefilter, for assembling and 
applying the filters, respectively.

• Any number of functions for specific filtering 
tasks can be defined and supplied to 
filterfun. 
E.g. Cox model p-values, coefficient of variation.

genefilter package



genefilter: separation of 
tasks

1. Select/define functions for specific filtering 
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function Æ a logical vector, TRUE indicates 
genes that are retained.

4. Apply that vector to the exprSet to obtain a 
microarray object for the subset of interesting 
genes.



genefilter: supplied filters

Filters supplied in the package
• kOverA – select genes for which k samples have 

expression measures larger than A.
• gapFilter – select genes with a large IQR or gap 

(jump) in expression measures across samples.
• ttest – select genes according to t-test nominal p-

values.
• Anova – select genes according to ANOVA nominal 

p-values.
• coxfilter – select genes according to Cox model 

nominal p-values.



• It is very simple to write your own filters.
• You can use the supplied filtering 

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for 
the variables that are needed to do the 
filtering. 

genefilter: writing filters



1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(exprs(DATA), ff)

4. Use wh to obtain the relevant subset of the 
data

mySub <- DATA[wh,]

genefilter: How to?



Differential gene expression
• Identify genes whose expression levels are 

associated with a response or covariate of 
interest
– clinical outcome such as survival, response to 

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and 
variability of these estimates. 
E.g. slope, interaction, or difference in means in a 
linear model.

• Testing: assess the statistical significance of 
the observed associations.



Multiple hypothesis testing

p-value = 0.0001 ☺
or

p-value = 5000 x 0.0001 /



Multiple hypothesis testing
• When testing for each gene the null hypothesis of no 

differential expression, e.g. using a t- or F-statistic, 
two types of errors can be committed.

• Type I error or false positive
– say that a gene is differentially expressed when it 

is not,
– reject a true null hypothesis.

• Type II error or false negative
– fail to identify a truly differentially expressed gene, 
– fail to reject a false null hypothesis.



Multiple hypothesis testing
• Large multiplicity problem: thousands of hypotheses

are tested simultaneously!
– Increased chance of false positives. 
– E.g. chance of at least one p-value < α for G independent 

tests is   
and converges to one as G increases. 
For G=1,000 and α = 0.01, this chance is 0.9999568!

– Individual p-values of 0.01 no longer correspond to 
significant findings.

• Need to adjust for multiple testing when assessing 
the statistical significance of the observed 
associations.

G)−− α1(1



Multiple hypothesis testing 
• Define an appropriate Type I error or false positive rate.
• Develop multiple testing procedures that 

– provide strong control of this error rate,
– are powerful (few false negatives),
– take into account the joint distribution of the test 

statistics.
• Report adjusted p-values for each gene which reflect the 

overall Type I error rate for the experiment.
• Resampling methods are useful tools to deal with the 

unknown joint distribution of the test statistics.



Multiple hypothesis testing

GRG-R

G1S
T

Type II error
False null 
hypotheses

G0
V

Type I errorU
True null 
hypotheses

Rejected 
hypotheses

Non-rejected 
hypotheses

From Benjamini & Hochberg (1995)



Type I error rates
• Per-family error rate (PFER). Expected 

number of false positives, i.e.,
PFER = E(V).

• Per-comparison error rate (PCER). Expected 
value of (# false positives / # of hypotheses), 
i.e.,

PCER = E(V)/G.
• Family-wise error rate (FWER). Probability of 

at least one false positive, i.e., 
FWER = p(V > 0).



Type I error rates

• False discovery rate (FDR). The FDR of 
Benjamini & Hochberg (1995) is the 
expected proportion of false positives 
among the rejected hypotheses, i.e.,

FDR = E(Q),
where by definition

Q = V/R, if R > 0, 
0,     if R = 0.



Strong control
• N.B. Expectations and probabilities above are 

conditional on which hypotheses are true.
• Strong control. Control of the Type I error rate 

under any combination of true and false 
hypotheses.

• Weak control. Control of the Type I error rate 
under only the complete null hypothesis, i.e., 
when all null hypotheses are true.

• Strong control is essential in microarray
experiments.



Comparison of error rates
• In general, for a given multiple testing 

procedure, 

and 

with FDR = FWER under the complete null.

• Thus, for a fixed criterion α for controlling the Type I 
error rates, the order reverses for the number of 
rejected hypotheses R: procedures controlling the 
FWER are generally more conservative than those 
controlling either the FDR or PCER. 

PFER  FWER  PCER ≤≤

 FWER  FDR ≤



Adjusted p-values
• Given any test procedure, the adjusted p-

value for a single gene g can be defined as 
the nominal level of the entire test procedure 
at which gene g would just be declared 
differentially expressed.

• Adjusted p-values reflect for each gene the 
overall experiment Type I error rate when 
genes with a smaller p-value are declared 
differentially expressed. 

• Can be estimated by resampling,
e.g. permutation or bootstrap.



Multiple testing procedures
• Strong control of FWER

– Bonferroni: single-step;
– Holm (1979): step-down;
– Hochberg (1986)*: step-up;
– Westfall & Young (1993): step-down maxT and 

minP, exploit joint distribution of test statistics.

• Strong control of FDR
– Benjamini & Hochberg (1995)*: step-up;
– Benjamini & Yekutieli (2001): step-up.

*some distributional assumptions required.



Multiple testing procedures
• Golub et al. (1999): neighborhood analysis

– weak control only, problematic definition of error 
rate.

• Tusher et al. (2001): SAM
– t- or F-like statistics;
– similar to univariate test with asymmetric cut-offs;
– permutation procedure controlling PCER;
– the SAM estimate of the FDR is E0(V)/R --- can be 

greater than one.



multtest package
• Multiple testing procedures for controlling

– Family-Wise Error Rate - FWER: Bonferroni, Holm (1979), 
Hochberg (1986), Westfall & Young (1993) maxT and minP;

– False Discovery Rate - FDR: Benjamini & Hochberg (1995), 
Benjamini & Yekutieli (2001).

• Tests based on t- or F-statistics for one- and two-factor 
designs.

• Permutation procedures for estimating adjusted p-
values. 

• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.



Reporting the results of 
multiple testing procedures

Plots for adjusted p-values 
• allow investigators to examine various false 

positive rates (FWER, FDR or PCER) 
associated with different gene lists; 

• do not require researchers to preselect a 
particular definition of Type I error rate or α-
level;

• provide tools for deciding on an appropriate 
combination of number of genes and 
tolerable false positive rate for a particular 
experiment and available resources.



Sorted adjusted p-values for different multiple testing procedures
Golub et al. (1999) ALL AML data

- FWER control
solid lines

- FDR control
dashed lines

- PCER control
dotted lines

multtest package



Number of rejected hypotheses vs. false positive rate
Golub et al. (1999) ALL AML data

- FWER control
solid lines

- FDR control
dashed lines

- PCER control
dotted lines

multtest package



Reporting the results of 
multiple testing procedures

• Select a number r of genes which you feel 
comfortable following up and read from the plot the 
corresponding nominal false positive rates (PCER, 
FDR, FWER) under various types of error control and 
testing procedures. 

• Find the number of hypotheses that would be 
rejected using a procedure controlling the FWER at a 
fixed level, and identify how many others would be 
rejected using procedures controlling the FDR and 
PCER at that level. 

• Find the number of hypotheses that would be 
rejected under one procedure, and read the level 
required to achieve that number under other 
methods. 



Clustering vs. classification
• Cluster analysis a.k.a. unsupersived learning

– the classes are unknown a priori; 
– the goal is to discover these classes from the data.

• Classification a.k.a. supervised learning, 
class prediction
– the classes are predefined;
– the goal is to understand the basis for the 

classification from a set of labeled objects and 
build a predictor for future unlabeled observations.



Distances
• Microarray data analysis often involves

– clustering genes or samples;
– classifying genes or samples.

• Both types of analyses are based on a 
measure of distance (or similarity) between 
genes or samples.

• R has a number of functions for computing 
and plotting distance and similarity matrices.



Distances
• Distance functions

– dist (mva): Euclidean, Manhattan, Canberra, 
binary;

– daisy (cluster).
• Correlation functions

– cor, cov.wt.
• Plotting functions

– image;
– plotcorr (ellipse);
– plot.cor, plot.mat (sma).



Correlation matrices

plotcorr function from ellipse package



Correlation matrices

plotcorr function from ellipse package



Correlation matrices

plot.cor function from sma package



Multidimensional scaling
• Given any n x n dissimilarity matrix D = (dij), 

multidimensional scaling (MDS) is concerned 
with identifying n points in Euclidean space 
with a similar distance structure D'=(dij'). 

• The purpose is to provide a low(er) 
dimensional representation of the distances 
which conveys information on the 
relationships between the n objects, such as 
the existence of clusters or one-dimensional 
structure in the data (e.g., seriation). 



MDS
• There are different approaches for reducing 

dimensionality, depending on how we define 
similarity between the old and new dissimilarity 
matrices for the n objects, i.e., depending on the 
objective or stress function S that we seek to 
minimize.
– Least-squares scaling

– Samming mapping
places more emphasis on smaller dissimilarities 
(and hence should be preferred for clustering 
methods).

– Shepard-Kruskal non-metric scaling is based on 
ranks, i.e., the order of the distances is more 
important than their actual values.

( ) 2/12)'()',( ∑ −= ijij ddDDS

ijijij dddDDS /)'()',( 2∑ −=



MDS and PCA
• When the distance matrix D is the Euclidean distance 

matrix between the rows of an n x m matrix X, there 
is a duality between principal component analysis
(PCA) and MDS.

• The k-dimensional classical solution to the MDS 
problem is given by the centered scores of the n 
objects on the first k principal components.

• The classical solution of MDS in k-dimensional space 
minimizes the sum of squared differences between 
the entries of the new and old dissimilarity matrices, 
i.e., is optimal for least-squares scaling.



MDS

• As with PCA, the quality of the 
representation will depend on the 
magnitude of the first k eigenvalues.

• The data analyst should choose a value 
for k that is small enough for ease 
representation but also corresponds to 
a substantial “proportion of the distance 
matrix explained”.



MDS
• N.B. The MDS solution reflects not only the 

choice of a distance function, but also the 
features selected. 

• If features were selected to separate the data 
into two groups (e.g., on the basis of two-
sample t-statistics), it should come as no 
surprise that an MDS plot has two groups. In 
this instance MDS is not a confirmatory 
approach.



R MDS software

• cmdscale: Classical solution to MDS, 
in package mva.

• sammon: Sammon mapping, in package 
MASS.

• isoMDS: Kruskal's non-metric MDS, in 
package MASS.



Classical MDS



Classical MDS

%43
||

|||| 2
=

+

∑
1

ιλ
λλ

%55
||

|||||| 32
=

++

∑
1

ιλ
λλλ



Cluster analysis packages
• class: self organizing maps (SOM).
• cluster: 

– AGglomerative NESting (agnes), 
– Clustering LARe Applications (clara), 
– DIvisive ANAlysis (diana), 
– Fuzzy Analysis (fanny),  
– MONothetic Analysis (mona), 
– Partitioning Around Medoids (pam).

• e1071: 
– fuzzy C-means clustering (cmeans), 
– bagged clustering (bclust).

• mva: 
– hierarchical clustering (hclust), 
– k-means (kmeans).

• Specialized summary, plot, and print methods for clustering 
results. 



pam and clusplot functions from cluster package

pam
K=2 K=3



pam and plot functions from cluster package

pam
K=2 K=3



hclust function from 
mva package

hclust



Dendrogram
• N.B. While dendrograms are quite appealing 

because of their apparent ease of 
interpretation, they can be misleading.

• First, the dendrogram corresponding to a 
given hierarchical clustering is not unique, 
since for each merge one needs to specify 
which subtree should go on the left and which 
on the right --- there are 2^(n-1) choices.

• The default in the R function hclust is to 
order the subtrees so that the tighter cluster is 
on the left.



Dendrogram

• Second, they impose structure on the 
data, instead of revealing structure in 
these data.

• Such a representation will be valid only 
to the extent that the pairwise
dissimilarities possess the hierarchical 
structure imposed by the clustering 
algorithm. 



Dendrogram
• The cophenetic correlation coefficient can be used to 

measure how well the hierarchical structure from the 
dendrogram represents the actual distances. 

• This measure is defined as the correlation between 
the n(n-1)/2 pairwise dissimilarities between 
observations and their cophenetic dissimilarities from 
the dendrogram, i.e., the between cluster 
dissimilarities at which two observations are first 
joined together in the same cluster.

• Function cophenetic in  mva package.



Dendrogram
Original data, 
coph corr = 0.74

Randomized data 
(perm. wi features),
coph corr = 0.57



Classification
• Predict a biological outcome on the basis of 

observable features.

• Outcome: tumor class, type of bacterial 
infection, survival, response to treatment.

• Features: gene expression measures, 
covariates such as age, sex.

Classifier OutcomeFeatures



Classification
• Old and extensive literature on classification, 

in statistics and machine learning.
• Examples of classifiers

– nearest neighbor classifiers (k-NN);
– discriminant analysis: linear, quadratic, logistic;
– neural networks;
– classification trees;
– support vector machines.

• Aggregated classifiers: bagging and boosting.
• Comparison on microarray data: 

simple classifiers like k-NN and naïve Bayes
perform remarkably well.



Performance assessment
• Classification error rates, or related 

measures, are usually reported
– to compare the performance of different 

classifiers; 
– to support statements such as 

“clinical outcome X for cancer Y can be predicted 
accurately based on gene expression measures”. 

• Classification error rates can be estimated by 
resampling, e.g. bootstrap or cross-validation.



Performance assessment
• It is essential to take into account 

feature selection and other training 
decisions in the error rate estimation 
process.
E.g. number of neighbors in k-NN, kernel in SVMs.

• Otherwise, error estimates can be 
severely biased downward, i.e., overly 
optimistic.



Important issues

• Standardization;
• Distance function;
• Feature selection;
• Loss function;
• Class priors;
• Binary vs. polychotomous classification.



Classification packages
• class: 

– k-nearest neighbor (knn), 
– learning vector quantization (lvq).

• e1071: support vector machines (svm).
• ipred: bagging, resampling based estimation of prediction 

error.
• LogitBoost: boosting for tree stumps.
• MASS: linear and quadratic discriminant analysis (lda, qda). 
• mlbench: machine learning benchmark problems.
• nnet: feed-forward neural networks and multinomial log-linear 

models.
• ranForest, RanForests: random forests.
• rpart: classification and regression trees.
• sma: diagonal linear and quadratic discriminant analysis, naïve 

Bayes (stat.diag.da).


