\documentclass{article} \usepackage{float} \date{} %\VignetteEngine{knitr::knitr} <>= BiocStyle::latex() @ % \VignetteIndexEntry{Supplementary Methods - automatic generation of paper figures} \begin{document} <>= library(knitr) opts_chunk$set(fig.path="figPaper/", fig.width=9, fig.height=8, warning=FALSE, out.width="0.5\\textwidth", fig.align="center", message=FALSE, dpi=300) @ \title{Supplementary Methods - Automatic generation of paper figures} \author{Joseph D. Barry, Erika Don\`a, Darren Gilmour, Wolfgang Huber} \maketitle \tableofcontents \section{Introduction} In this vignette we automatically generate figure panels produced for the paper by Barry {\em et al}. <>= library(TimerQuant) library(ggplot2) library(grid) library(deSolve) library(reshape2) library(dplyr) data("profileGradients") data("maturationData") data("FRETdata") data("FRETphotoconversionEfficiency") myTheme <- theme_bw()+theme(title=element_text(size=32), text=element_text(size=24), axis.title.y=element_text(vjust=1.5), panel.grid=element_blank()) @ \section{Figure 1} \subsection{Figure 1B} <>= t <- seq(0.001, 1200, by=0.1) p0 <- 10 TA <- 30 TB <- 180 kA <- log(2)/TA kB <- log(2)/TB T1 <- 5 T2 <- 100 m1 <- log(2)/T1 m2 <- log(2)/T2 df <- data.frame(t=t, x1B=x1(p0, m1, kB, t), x2B=x1(p0, m2, kB, t), x1A=x1(p0, m1, kA, t), x2A=x1(p0, m2, kA, t)) df <- melt(df, id="t") df$FP <- df[, "halflife"] <- NA df[df$variable %in% c("x1B", "x1A"), "FP"] <- "FP1" df[df$variable %in% c("x2B", "x2A"), "FP"] <- "FP2" df[df$variable %in% c("x1A", "x2A"), "halflife"] <- paste(TA, "minutes") df[df$variable %in% c("x1B", "x2B"), "halflife"] <- paste(TB, "minutes") ggplot(df, aes(x=t, y=value, color=FP, linetype=halflife))+geom_line(size=1)+ scale_color_manual(values=c("darkgreen", "red"))+ scale_linetype_manual(values=c("solid", "dashed"))+myTheme+ scale_x_continuous(breaks=seq(0, 1200, by=200))+ theme(legend.position="none")+ labs(list(linetype="half-life", color="fluorophore"))+ xlab("time (minutes)")+ ylab("fluorescence intensity (a.u.)") @ \subsection{Figure 1C} <>= df <- data.frame(t=t[-1], RatioB=x1(p0, m2, kB, t[-1])/x1(p0, m1, kB, t[-1]), RatioA=x1(p0, m2, kA, t[-1])/x1(p0, m1, kA, t[-1])) df <- melt(df, id="t") ggplot(df, aes(x=t, y=value, color=variable, linetype=variable))+ geom_line(size=1)+scale_color_manual(values=c("blue", "blue"))+ scale_linetype_manual(values=c("solid", "dashed"))+myTheme+ scale_x_continuous(breaks=seq(0, 1200, by=200))+ theme(legend.position="none")+xlab("time (minutes)")+ ylab("FP2/FP1 intensity ratio") @ \subsection{Figure 1D} <>= T3 <- 15 halfLifeSeq <- seq(1, 1000, by=0.1) df <- data.frame(halfLife=halfLifeSeq, rssT2=ratioSteadyState(T1, T2, halfLifeSeq), rssT3=ratioSteadyState(T1, T3, halfLifeSeq)) df <- melt(df, id="halfLife") df$FP2 <- NA df[df$variable == "rssT2", "FP2"] <- paste(T2, "minute maturation time") df[df$variable == "rssT3", "FP2"] <- paste(T3, "minute maturation time") df$FP2 <- factor(df$FP2, levels=c("15 minute maturation time", "100 minute maturation time")) ggplot(df, aes(x=halfLife, y=value, color=FP2))+ geom_line(size=1)+scale_color_manual(values=c("darkgrey", "blue"))+ scale_x_log10(breaks=getBreaks10(halfLifeSeq))+ myTheme+ theme(legend.position="none")+ xlab(expression("protein half-life"~T[1/2]~"(minutes)"))+ ylab("steady-state ratio R")+ geom_segment(aes(x=0, xend=TA, y=ratioSteadyState(T1, T2, TA), yend=ratioSteadyState(T1, T2, TA)), linetype="dotted", colour="blue")+ geom_segment(aes(x=0, xend=TB, y=ratioSteadyState(T1, T2, TB), yend=ratioSteadyState(T1, T2, TB)), linetype="dotted", colour="blue")+ geom_segment(aes(x=0, xend=TA, y=ratioSteadyState(T1, T3, TA), yend=ratioSteadyState(T1, T3, TA)), linetype="dashed", colour="darkgrey")+ geom_segment(aes(x=0, xend=TB, y=ratioSteadyState(T1, T3, TB), yend=ratioSteadyState(T1, T3, TB)), linetype="dashed", colour="darkgrey")+ geom_segment(aes(x=TA, xend=TA, y=-Inf, yend=ratioSteadyState(T1, T2, TA)), linetype="dotted", colour="blue")+ geom_segment(aes(x=TB, xend=TB, y=-Inf, yend=ratioSteadyState(T1, T2, TB)), linetype="dotted", colour="blue")+ geom_segment(aes(x=TA, xend=TA, y=ratioSteadyState(T1, T2, TA), yend=ratioSteadyState(T1, T3, TA)), linetype="dashed", colour="darkgrey")+ geom_segment(aes(x=TB, xend=TB, y=ratioSteadyState(T1, T2, TB), yend=ratioSteadyState(T1, T3, TB)), linetype="dashed", colour="darkgrey")+ annotation_logticks(sides="b") @ \subsection{Figure 1E} <>= tRangeFP1 <- c(1, 50) tRangeFP2 <- c(10, 500) colRamp <- colorRampPalette(colors=c('darkgreen','yellow', 'orange', 'red'))(100) h <- genRatioHeatmap(tRangeFP=tRangeFP2, Tfixed=T1, TA=min(halfLifeSeq), TB=max(halfLifeSeq), channel=2, n=150, ramp=colRamp) h <- h+geom_hline(yintercept=TA, linetype="dashed", size=1)+ geom_hline(yintercept=TB, linetype="dashed", size=1)+myTheme+ annotation_logticks() print(h) @ \subsection{Figure 1F} <>= pSeq <- c(0.5, 2, 8) nRealizations <- 500 sigmaAdd <- 1 T2 <- getSpacedSeq(c(10, 500), n=100) res <- lapply(pSeq, function(p) lapply(T2, function(Time) simulatedSignalN(T1, T2=Time, TA, TB, sigmaAdd, nRealizations, p=p, E=0))) dfFP2 <- lapply(seq_along(res), function(i) { df2 <- lapply(seq_along(res[[i]]), function(j) return(data.frame(p=pSeq[i], Time=T2[j], D=res[[i]][[j]]))) df2 <- do.call("rbind", df2) return(df2) }) dfFP2 <- do.call("rbind", dfFP2) dfFP2$FP <- "FP2" dfFP2s <- dfFP2 %>% group_by(p, Time, FP) %>% summarise(D.mean=mean(D, na.rm=TRUE), D.sd=sd(D, na.rm=TRUE)) dfFP2s$D0 <- simulatedSignal(T1, dfFP2s$Time, TA, TB, sigmaAdd=0, p=dfFP2s$p) T1 <- getSpacedSeq(c(1, 30), n=100) T2 <- 100 res <- lapply(pSeq, function(p) lapply(T1, function(Time) simulatedSignalN(T1=Time, T2, TA, TB, sigmaAdd, nRealizations, p=p, E=0))) dfFP1 <- lapply(seq_along(res), function(i) { df2 <- lapply(seq_along(res[[i]]), function(j) return(data.frame(p=pSeq[i], Time=T1[j], D=res[[i]][[j]]))) df2 <- do.call("rbind", df2) return(df2) }) dfFP1 <- do.call("rbind", dfFP1) dfFP1$FP <- "FP1" dfFP1s <- dfFP1 %>% group_by(p, Time, FP) %>% summarise(D.mean=mean(D, na.rm=TRUE), D.sd=sd(D, na.rm=TRUE)) dfFP1s$D0 <- simulatedSignal(T1=dfFP1s$Time, T2, TA, TB, sigmaAdd=0, p=dfFP1s$p) df <- bind_rows(dfFP1s, dfFP2s) df$p <- paste("p =", df$p, "molecules/minute") df$FPline <- df$FP df$FPline <- paste0(df$FP, "line") ggplot(df, aes(Time, D.mean, colour=FP))+geom_point()+myTheme+ xlab("FP maturation time (minutes)")+ylab(expression(S))+ scale_color_manual(values=c("FP1"="darkgreen", "FP2"="red", "FP1line"="black", "FP2line"="black"))+ scale_x_log10(breaks=getBreaks10(range(df$Time)))+ geom_errorbar(aes(ymin=D.mean-D.sd, ymax=D.mean+D.sd))+ geom_line(aes(Time, D0, colour=FPline), data=df)+ facet_wrap(~p)+theme(legend.position="none")+ annotation_logticks(sides="b") T1 <- 5; T2 <- 100 @ \subsection{Figure 1G} <>= dfs <- filter(df, FP == "FP2") dfs$CV <- dfs$D.sd/dfs$D.mean dfFit <- dfs %>% group_by(p, FP) %>% do(fitCV(.)) ggplot(dfs, aes(Time, D.sd/D.mean, color=p))+geom_point()+myTheme+ scale_x_log10(breaks=getBreaks10(range(dfs$Time)))+ scale_y_log10(breaks=getBreaks10(range(dfs$CV)))+ xlab("FP2 maturation time (minutes)")+ylab(expression(sigma[S]~"/"~mu[S]))+ geom_line(aes(Time, CV), data=dfFit)+ geom_vline(aes(xintercept=FP2optimumTime, color=p), data=dfFit, linetype="dashed")+ theme(legend.position="none")+ annotation_logticks() @ \subsection{Figure S2} <>= Eseq <- seq(0, 1, length=100) p <- 2 res <- lapply(Eseq, function(E) simulatedSignalN(T1, T2=T2, TA, TB, sigmaAdd, nRealizations, p=p, E=E)) dfE <- lapply(seq_along(res), function(i) data.frame(E=Eseq[i], D=res[[i]])) dfE <- do.call("rbind", dfE) dfEs <- dfE %>% group_by(E) %>% summarise(D.mean=mean(D, na.rm=TRUE), D.sd=sd(D, na.rm=TRUE)) dfEs$D0 <- simulatedSignal(T1=T1, T2, TA, TB, sigmaAdd=0, p=p, E=dfEs$E) ggplot(dfEs, aes(E, D.mean))+geom_point(col="blue")+myTheme+ xlab("coefficient of FRET")+ylab("timer signal")+ geom_errorbar(aes(ymin=D.mean-D.sd, ymax=D.mean+D.sd), col="blue")+ geom_line(aes(E, D0), data=dfEs) @ \section{Figure 2} \subsection{Figure 2B} <>= myCol <- c(tdTom="orange", TagRFP="darkred", mKate2="purple") A <- profileGradients Ahat <- apply(A, c(1, 2), function(x) x/mean(x[1:6])) Ahat <- aperm(Ahat, c(2, 3, 1)) Ahat <- log2(Ahat) plotPrimordiumProfile(Ahat["mKate2", , ], ylim=c(-0.3, 1.3), xlim=c(-200, 0), ylab="timer signal", col=myCol["mKate2"], lwd=3, lty=3, cex.axis=1.5, cex.lab=2.5, alpha=0.1) plotPrimordiumProfile(Ahat["TagRFP", , ], add=TRUE, lty=2, col=myCol["TagRFP"], lwd=3, alpha=0.1) plotPrimordiumProfile(Ahat["tdTom", , ], add=TRUE, lty=1, col=myCol["tdTom"], lwd=3, alpha=0.1) abline(v=0, lty=2) abline(v=-25, lty=2) nSamples <- c(tdTom=34, TagRFP=40, mKate2=52) myLegend <- paste0(names(nSamples), "-sfGFP (n=", nSamples, ")") legend(x=-100, y=1.2, legend=myLegend, lty=1:3, lwd=3, cex=1.5, col=myCol) @ \subsection{Figure S1} <>= A <- maturationData A[, "meanGFP", 4, 3, "mKate2"] <- NA # jump in signal in gfp A[, "meanGFP", 2, 2, "TagRFP"] <- NA # jump in signal in gfp A[, "meanGFP", 1, 4, "tdTom"] <- NA # jump in gfp A[, "meanRFP", 1:2, 1:4, "TagRFP"] <- NA @ <>= A <- A[as.integer(dimnames(A)$t) <= 800, c("meanGFP", "meanRFP"), , , ] A[as.integer(dimnames(A)$t) > 500, "meanGFP", , , ] <- NA indT <- which(dimnames(A)$t == "500") myNorm <- function(x, indT) { x <- x-min(x, na.rm=TRUE) x[x < 0] <- NA x <- x/x[indT] return(x) } Anorm <- apply(A, c(2, 3, 4, 5), myNorm, indT) dimnames(Anorm) <- dimnames(A) @ <>= AnormSummarizeViews <- apply(Anorm, c(1, 2, 3, 5), mean, na.rm=TRUE) AnormSummarizeSamples <- apply(AnormSummarizeViews, c(1, 2, 4), mean, na.rm=TRUE) Amelt <- melt(AnormSummarizeSamples, id="t") Amelt$tFTs <- as.factor(paste0(Amelt$tFTs, "-sfGFP")) o <- match(levels(Amelt$tFT), paste0(names(myCol), "-sfGFP")) Amelt$tFTs <- factor(Amelt$tFTs, levels=levels(Amelt$tFTs)[o]) ggplot(na.omit(Amelt), aes(x=t, y=value, color=tFTs))+geom_line(size=2)+ facet_wrap(~data, scales="free_x")+ scale_color_manual(values=as.vector(myCol))+ geom_vline(xintercept=500, linetype="dashed")+ xlab("time (minutes)")+ylab("normalized fluorescence intensity")+myTheme @ \subsection{Figure 2C} <>= FRET <- FRETdata myColReduced <- myCol[names(myCol) %in% FRET$tFT] FRET$tFT <- paste0(FRET$tFT, "-sfGFP") FRET$tFT <- as.factor(FRET$tFT) o <- match(levels(FRET$tFT), paste0(names(myCol), "-sfGFP")) FRET$tFT <- factor(FRET$tFT, levels=levels(FRET$tFT)[o]) ggplot(FRET, aes(tFT, FRET, fill="white"))+ geom_boxplot(outlier.size=0, fill="white")+ geom_point(aes(x=tFT, y=FRET, colour=tFT, size=4), position="jitter")+ scale_color_manual(values=as.vector(myColReduced))+xlab("")+myTheme+ ylab("coefficient of FRET")+theme(legend.position="none")+ theme(axis.text.x=element_text(size=24)) FRETs <- tapply(FRET$FRET, FRET$tFT, median) print(FRETs) @ \subsection{Figure 2D} <>= FPestimate <- c(mKate2=15, tdTom=80, TagRFP=100) tFTs <- names(FPestimate) Rhat <- sapply(tFTs, function(ch) median(Ahat[ch, , "200"], na.rm=TRUE)) Tfront <- 60; Tback <- 5*Tfront Tseq <- seq(Tfront, Tback, length=100) T1 <- 6 df <- data.frame( halfLife=Tseq, tdTomNoFret=signal(T1=T1, T2=FPestimate["tdTom"], TA=Tfront, TB=Tseq, E=0), tdTomFret=signal(T1=T1, T2=FPestimate["tdTom"], TA=Tfront, TB=Tseq, E=FRETs["tdTom-sfGFP"]), TagRFPNoFret=signal(T1=T1, T2=FPestimate["TagRFP"], TA=Tfront, TB=Tseq, E=0), TagRFPFret=signal(T1=T1, T2=FPestimate["TagRFP"], TA=Tfront, TB=Tseq, E=FRETs["TagRFP-sfGFP"])) df <- melt(df, id="halfLife") df$FRET <- !grepl(x=as.character(df$variable), pattern="NoFret") df$FRET <- factor(df$FRET, levels=c("TRUE", "FALSE")) df$tFT[grepl(x=as.character(df$variable), pattern="mKate2")] <- "mKate2-sfGFP" df$tFT[grepl(x=as.character(df$variable), pattern="tdTom")] <- "tdTom-sfGFP" df$tFT[grepl(x=as.character(df$variable), pattern="TagRFP")] <- "TagRFP-sfGFP" df$tFT <- factor(df$tFT, levels=paste0(names(myCol), "-sfGFP")) ggplot(df, aes(x=halfLife, y=value, color=tFT, linetype=FRET))+ geom_line(size=1)+ scale_color_manual(values=as.vector(myColReduced), guide=guide_legend(title="timer"))+ scale_linetype_manual(values=c("solid", "dashed"))+ xlab("simulated protein half-life (minutes)")+ ylab(expression("simulated timer signal"))+ geom_vline(xintercept=Tfront, linetype="dotted")+ scale_x_reverse()+myTheme+ theme(legend.position=c(0.77, 0.85), legend.key.width=unit(2, "cm"), legend.box.just="left") @ \subsection{Figure S3A} <>= t <- seq(0.001, 1000, by=0.1) x1ss0 <- x1ss(p0, m2, kB, f=1) tss0 <- tss(m2, kB) df <- data.frame(t=t, x1=x1(p0, m2, kB, t)) ggplot(df, aes(t, x1))+geom_line(col="red", size=1)+xlab("time (minutes)")+ ylab("FP2 fluorescence intensity (a.u.)")+ geom_hline(yintercept=x1ss0)+ geom_abline(intercept=TimerQuant:::inflectionOffset(p0, m2, kB, 0), slope=TimerQuant:::inflectionSlope(p0, m2, kB, 0))+ geom_vline(xintercept=tss0, linetype="dotted", size=2)+ geom_point(data=NULL, aes(x=tss0, y=x1ss0), color="blue", size=4)+myTheme @ \subsection{Figure S3B} <>= tRange <- c(10, 100) colRamp <- rainbow(120)[1:100] h <- genTimeSteadyStateHeatmap(tRange, tRange, n=150, ramp=colRamp)+myTheme+ annotation_logticks() print(h) @ \section{Figure 3} <>= t <- seq(0, 600, length=1000) t0 <- min(t); tf <- max(t) p0 <- 10; k0 <- log(2)/60 k1 <- log(2)/30 m1 <- log(2)/T1; m2 <- log(2)/T2 x01 <- c(X1=x0ss(p0, m1, k0), X2=x1ss(p0, m1, k0)) x02 <- c(X1=x0ss(p0, m2, k0), X2=x1ss(p0, m2, k0)) @ <>= rFun <- function(type, r0, tf, slopePrefactor=0.0015, stepPositionPrefactor=0.1) { g <- switch(as.character(type), constant=function(t) r0, burst=stepfun(c(tf/10, tf/10+tf/20), c(r0, r0+2*r0, r0)), linearIncrease=function(t) r0+slopePrefactor*r0*t, linearDecrease=function(t) r0-slopePrefactor*r0*t, stepUp=stepfun(tf*stepPositionPrefactor, c(r0, r0+r0*0.5)), stepDown=stepfun(tf*stepPositionPrefactor, c(r0, r0-r0*0.5))) return(g) } solveModel <- function(x01, x02, tseq, m1, m2, typeProd="constant", typeDeg="constant", p0, k0, stepPositionPrefactorProd=0.1, stepPositionPrefactorDeg=0.1) { p <- rFun(typeProd, r0=p0, tf=max(tseq), stepPositionPrefactor=stepPositionPrefactorProd) k <- rFun(typeDeg, r0=k0, tf=max(tseq), stepPositionPrefactor=stepPositionPrefactorDeg) eqs <- function(t, state, parameters) { with(as.list(c(state, parameters)), list(c(dX1=p(t)-m*X1-k(t)*X1, dX2=m*X1-k(t)*X2))) } fp1 <- ode(y=x01, times=tseq, func=eqs, parms=c(p=p, m=m1, k=k)) fp2 <- ode(y=x02, times=tseq, func=eqs, parms=c(p=p, m=m2, k=k)) df <- data.frame(time=fp1[, 1], FP1=fp1[, 3], FP2=fp2[, 3]) df$Ratio <- df$FP2/df$FP1 df$typeProd <- factor(typeProd) df$typeDeg <- factor(typeDeg) return(df) } @ \subsection{Figure 3A} <>= myBreaks <- seq(0, 600, by=120) dfp <- data.frame(t=t, linearIncrease=rFun("linearIncrease", r0=p0, tf=tf)(t), linearDecrease=rFun("linearDecrease", r0=p0, tf=tf)(t)) types <- colnames(dfp)[-1] dfp <- melt(dfp, id="t") gp <- ggplot(dfp, aes(t, value))+geom_line(size=1)+ facet_wrap(~variable, ncol=1)+ xlab("time (minutes)")+ylab("production rate (molecules per minute)")+ scale_x_continuous(breaks=myBreaks)+myTheme dfk <- data.frame(t=t, linearIncrease=rFun("linearIncrease", r0=k0, tf=tf)(t), linearDecrease=rFun("linearDecrease", r0=k0, tf=tf)(t)) dfk <- melt(dfk, id="t") gk <- ggplot(dfk, aes(t, value))+geom_line(size=1)+ facet_wrap(~variable, ncol=1)+xlab("time (minutes)")+ ylab(expression(paste("degradation rate (minutes"^{-1}, ")")))+ scale_x_continuous(breaks=myBreaks)+myTheme df <- lapply(types, function(n) solveModel(x01, x02, t, m1=m1, m2=m2, typeProd=n, typeDeg=n, p0=p0, k0=k0)) for (i in seq_along(df)) df[[i]]$type <- types[i] df <- do.call("rbind", df) df <- na.omit(df) reorderFactors <- function(x, channel="uid", ordering) { x[, channel] <- as.factor(x[, channel]) o <- match(ordering, levels(x[, channel])) x[, channel] <- factor(x[, channel], levels(x[, channel])[o]) return(x) } df <- reorderFactors(df, "type", types) df2 <- melt(df, id=c("time", "typeProd", "typeDeg", "type")) df2 <- filter(df2, variable %in% c("FP1", "FP2")) g2 <- ggplot(df2, aes(time, value, color=variable))+geom_line(size=1)+ facet_wrap(~type, ncol=1, scales="fixed")+xlab("time (minutes)")+ scale_x_continuous(breaks=myBreaks)+ scale_color_manual(values=c("darkgreen", "red"))+ ylab("FP1, FP2 fluorescence intensity (a.u.)")+myTheme+ theme(legend.position="none") g3 <- ggplot(df, aes_string("time", "Ratio"))+geom_line(color="blue", size=1)+ facet_wrap(~type, ncol=1, scales="fixed")+xlab("time (minutes)")+ ylab("FP2/FP1 intensity ratio")+ scale_x_continuous(breaks=myBreaks)+ myTheme grid.newpage() pushViewport(viewport(layout=grid.layout(1, 4))) print(gp, vp=viewport(layout.pos.row=1, layout.pos.col=1)) print(gk, vp=viewport(layout.pos.row=1, layout.pos.col=2)) print(g2, vp=viewport(layout.pos.row=1, layout.pos.col=3)) print(g3, vp=viewport(layout.pos.row=1, layout.pos.col=4)) @ \subsection{Figure 3B} <>= dfp <- data.frame(t=t, burst=rFun("burst", r0=p0, tf=tf)(t), stepUp=rFun("stepUp", r0=p0, tf=tf)(t)) types <- colnames(dfp)[-1] dfp <- melt(dfp, id="t") gp <- ggplot(dfp, aes(t, value))+geom_line(size=1)+ facet_wrap(~variable, ncol=1)+xlab("time (minutes)")+ ylab("production rate (molecules per minute)")+ scale_x_continuous(breaks=myBreaks)+myTheme df <- lapply(types, function(n) solveModel(x01, x02, t, m1=m1, m2=m2, typeProd=n, typeDeg="constant", p0=p0, k0=k0)) for (i in seq_along(df)) df[[i]]$type <- types[i] df <- do.call("rbind", df) df <- na.omit(df) df2 <- melt(df, id=c("time", "typeProd", "typeDeg", "type")) df2 <- filter(df2, variable %in% c("FP1", "FP2")) g2 <- ggplot(df2, aes(time, value, color=variable))+geom_line(size=1)+ facet_wrap(~type, ncol=1, scales="fixed")+xlab("time (minutes)")+ scale_x_continuous(breaks=myBreaks)+ scale_color_manual(values=c("darkgreen", "red"))+ ylab("FP1, FP2 fluorescence intensity (a.u.)")+myTheme+ theme(legend.position="none") g3 <- ggplot(df, aes_string("time", "Ratio"))+geom_line(color="blue", size=1)+ facet_wrap(~type, ncol=1, scales="fixed")+xlab("time (minutes)")+ ylab("FP2/FP1 intensity ratio")+ scale_x_continuous(breaks=myBreaks)+ myTheme grid.newpage() pushViewport(viewport(layout=grid.layout(1, 3))) print(gp, vp=viewport(layout.pos.row=1, layout.pos.col=1)) print(g2, vp=viewport(layout.pos.row=1, layout.pos.col=2)) print(g3, vp=viewport(layout.pos.row=1, layout.pos.col=3)) @ \subsection{Figure 3C} <>= dfk <- data.frame(t=t, stepDown=rFun("stepDown", r0=k0, tf=tf)(t), stepUp=rFun("stepUp", r0=k0, tf=tf)(t)) types <- colnames(dfk)[-1] dfk <- melt(dfk, id="t") gk <- ggplot(dfk, aes(t, value))+geom_line(size=1)+xlab("time (minutes)")+ ylab(expression(paste("degradation rate (minutes"^{-1}, ")")))+ facet_wrap(~variable, ncol=1)+scale_x_continuous(breaks=myBreaks)+myTheme df <- lapply(types, function(n) solveModel(x01, x02, t, m1=m1, m2=m2, typeProd="constant", typeDeg=n, p0=p0, k0=k0)) for (i in seq_along(df)) df[[i]]$type <- types[i] df <- do.call("rbind", df) df <- na.omit(df) df2 <- melt(df, id=c("time", "typeProd", "typeDeg", "type")) df2 <- filter(df2, variable %in% c("FP1", "FP2")) g2 <- ggplot(df2, aes(time, value, color=variable))+geom_line(size=1)+ xlab("time (minutes)")+ facet_wrap(~typeDeg, ncol=1, scales="fixed")+ scale_x_continuous(breaks=myBreaks)+ scale_color_manual(values=c("darkgreen", "red"))+ ylab("FP1, FP2 fluorescence intensity (a.u.)")+myTheme+ theme(legend.position="none") g3 <- ggplot(df, aes_string("time", "Ratio"))+geom_line(color="blue", size=1)+ facet_wrap(~typeDeg, ncol=1, scale="fixed")+xlab("time (minutes)")+ ylab("FP2/FP1 intensity ratio")+scale_x_continuous(breaks=myBreaks)+myTheme grid.newpage() pushViewport(viewport(layout=grid.layout(1, 3))) print(gk, vp=viewport(layout.pos.row=1, layout.pos.col=1)) print(g2, vp=viewport(layout.pos.row=1, layout.pos.col=2)) print(g3, vp=viewport(layout.pos.row=1, layout.pos.col=3)) @ \end{document}