## ----style, echo = FALSE, results = 'asis', message=FALSE---------------- BiocStyle::markdown() ## ----env, message=FALSE, echo=FALSE, warning=FALSE----------------------- library("RforProteomics") library("BiocInstaller") library("mzR") library("MSnbase") library("knitr") library("rpx") library("xtable") library("RColorBrewer") library("MALDIquant") library("MALDIquantForeign") library("pRoloc") library("pRolocdata") library("msmsTests") library("msmsEDA") ## ----packs, cache=FALSE, warning=FALSE, echo=FALSE----------------------- library("RforProteomics") pp <- proteomicsPackages() msp <- massSpectrometryPackages() ## ----pptab, echo=FALSE, results='asis'----------------------------------- kable(pp, format = "html") ## ----msptab, echo=FALSE, results='asis'---------------------------------- kable(msp, format = "html") ## ----anscombe, echo = FALSE, results='asis'------------------------------ kable(anscombe, format = "html") ## ----anscombetab--------------------------------------------------------- tab <- matrix(NA, 5, 4) colnames(tab) <- 1:4 rownames(tab) <- c("var(x)", "mean(x)", "var(y)", "mean(y)", "cor(x,y)") for (i in 1:4) tab[, i] <- c(var(anscombe[, i]), mean(anscombe[, i]), var(anscombe[, i+4]), mean(anscombe[, i+4]), cor(anscombe[, i], anscombe[, i+4])) ## ----anstabdisplay, echo=FALSE------------------------------------------- kable(tab) ## ----anscombefig, dev='png'---------------------------------------------- ff <- y ~ x mods <- setNames(as.list(1:4), paste0("lm", 1:4)) par(mfrow = c(2, 2), mar = c(4, 4, 1, 1)) for (i in 1:4) { ff[2:3] <- lapply(paste0(c("y","x"), i), as.name) plot(ff, data = anscombe, pch = 19, xlim = c(3, 19), ylim = c(3, 13)) mods[[i]] <- lm(ff, data = anscombe) abline(mods[[i]]) } ## ----anscomberesids, echo=FALSE, fig.cap="The 11 sets of residuals for Anscombe's four datasets."---- kable(sapply(mods, residuals)) ## ----, makemadata, warning=FALSE, cache=FALSE---------------------------- library("rpx") px1 <- PXDataset("PXD000001") mztab <- pxget(px1, "PXD000001_mztab.txt") library("MSnbase") ## here, we need to specify the (old) mzTab version 0.9 qnt <- readMzTabData(mztab, what = "PEP", version = "0.9") sampleNames(qnt) <- reporterNames(TMT6) qnt <- filterNA(qnt) ## may be combineFeatuers spikes <- c("P02769", "P00924", "P62894", "P00489") protclasses <- as.character(fData(qnt)$accession) protclasses[!protclasses %in% spikes] <- "Background" madata42 <- data.frame(A = rowMeans(log(exprs(qnt[, c(4, 2)]), 10)), M = log(exprs(qnt)[, 4], 2) - log(exprs(qnt)[, 2], 2), data = rep("4vs2", nrow(qnt)), protein = fData(qnt)$accession, class = protclasses) madata62 <- data.frame(A = rowMeans(log(exprs(qnt[, c(6, 2)]), 10)), M = log(exprs(qnt)[, 6], 2) - log(exprs(qnt)[, 2], 2), data = rep("6vs2", nrow(qnt)), protein = fData(qnt)$accession, class = protclasses) madata <- rbind(madata42, madata62) ## ----, mafig1------------------------------------------------------------ par(mfrow = c(1, 2)) plot(M ~ A, data = madata42, main = "4vs2", xlab = "A", ylab = "M", col = madata62$class) plot(M ~ A, data = madata62, main = "6vs2", xlab = "A", ylab = "M", col = madata62$class) ## ----mafig2-------------------------------------------------------------- library("lattice") latma <- xyplot(M ~ A | data, data = madata, groups = madata$class, auto.key = TRUE) print(latma) ## ----mafig3-------------------------------------------------------------- library("ggplot2") ggma <- ggplot(aes(x = A, y = M, colour = class), data = madata, colour = class) + geom_point() + facet_grid(. ~ data) print(ggma) ## ----macols-------------------------------------------------------------- library("RColorBrewer") bcols <- brewer.pal(4, "Set1") cls <- c("Background" = "#12121230", "P02769" = bcols[1], "P00924" = bcols[2], "P62894" = bcols[3], "P00489" = bcols[4]) ## ----macust-------------------------------------------------------------- ggma2 <- ggplot(aes(x = A, y = M, colour = class), data = madata) + geom_point(shape = 19) + facet_grid(. ~ data) + scale_colour_manual(values = cls) + guides(colour = guide_legend(override.aes = list(alpha = 1))) print(ggma2) ## ----mafigmsnset--------------------------------------------------------- MAplot(qnt, cex = .8) ## ----shinyMA, eval=FALSE------------------------------------------------- ## shinyMA() ## ----msmsTestsData, cache=FALSE------------------------------------------ library("msmsEDA") library("msmsTests") data(msms.dataset) ## Pre-process expression matrix e <- pp.msms.data(msms.dataset) ## Models and normalizing condition null.f <- "y~batch" alt.f <- "y~treat+batch" div <- apply(exprs(e),2,sum) ## Test res <- msms.glm.qlll(e,alt.f,null.f,div=div) lst <- test.results(res,e,pData(e)$treat,"U600","U200",div, alpha=0.05,minSpC=2,minLFC=log2(1.8), method="BH") ## ----volc1--------------------------------------------------------------- plot(lst$tres$LogFC, -log10(lst$tres$p.value)) plot(lst$tres$LogFC, -log10(lst$tres$p.value), xlim = c(-3, 3)) grid() ## ----volc2--------------------------------------------------------------- ## Plot res.volcanoplot(lst$tres, max.pval=0.05, min.LFC=1, maxx=3, maxy=NULL, ylbls=4) ## ----msmsedapca---------------------------------------------------------- library("msmsEDA") data(msms.dataset) msnset <- pp.msms.data(msms.dataset) lst <- counts.pca(msnset, wait=FALSE) ## ----pca----------------------------------------------------------------- pcadata <- lst$pca$x[, 1:2] head(pcadata) plot(pcadata[, 1], pcadata[, 2], xlab = "PCA1", ylab = "PCA2") grid() ## ----mkplottab, echo=FALSE----------------------------------------------- plotfuns <- rbind(c("scatterplots", "plot", "xyplot", "geom_point"), c("histograms", "hist", "histgram", "geom_histogram"), c("density plots", "plot(density())", "densityplot", "geom_density"), c("boxplots", "boxplot", "bwplot", "geom_boxplot"), c("violin plots", "vioplot::vioplot", "bwplot(..., panel = panel.violin)", "geom_violin"), c("line plots", "plot, matplot", "xyploy, parallelplot", "geom_line"), c("bar plots", "barplot", "barchart", "geom_bar"), c("pie charts", "pie", "", "geom_bar with polar coordinates"), c("dot plots", "dotchart", "dotplot", "geom_point"), c("stip plots", "stripchart", "stripplot", "goem_point"), c("dendrogramms", "plot(hclust())", "latticeExtra package", "ggdendro package"), c("heatmaps", "image, heatmap", "levelplot", "geom_tile")) colnames(plotfuns) <- c("plot type", "traditional", "lattice", "ggplot2") ## ----, plottab----------------------------------------------------------- kable(plotfuns) ## ----tandata------------------------------------------------------------- library("pRolocdata") data(tan2009r1) ## ----histex-------------------------------------------------------------- x <- exprs(tan2009r1)[, 1] ## ----histplot, fig.height=7, fig.width=14-------------------------------- par(mfrow = c(1, 2)) hist(x) plot(density(x)) ## ----bxplot, fig.width=7, fig.height=10---------------------------------- library("beanplot") x <- exprs(tan2009r1) par(mfrow = c(2, 1)) boxplot(x) beanplot(x[, 1], x[, 2], x[, 3], x[, 4], log = "") ## ----matplotex, fig.width=7, fig.height=10------------------------------- er <- fData(tan2009r1)$markers == "ER" mt <- fData(tan2009r1)$markers == "mitochondrion" par(mfrow = c(2, 1)) matplot(t(x[er, ]), type = "b", col = "red", pch = 1, lty = 1) matplot(t(x[mt, ]), type = "b", col = "steelblue", pch = 1, lty = 1) ## ----mrktab-------------------------------------------------------------- x <- table(fData(tan2009r1)$markers) x ## ----mrkplot, fig.height=7, fig.width=12--------------------------------- par(mfrow = c(1, 2)) barplot(x) dotchart(x) ## ----hmap---------------------------------------------------------------- heatmap(exprs(tan2009r1)) ## ----image, fig.width=14, fig.height=7----------------------------------- par(mfrow = c(1, 2)) x <- matrix(1:9, ncol = 3) image(x) image(tan2009r1) ## ----dendro-------------------------------------------------------------- d <- dist(t(exprs(tan2009r1))) ## distance between samples hc <- hclust(d) ## hierarchical clustering plot(hc) ## visualisation ## ----mapsprep------------------------------------------------------------ library("mzR") mzf <- pxget(px1, 6) ms <- openMSfile(mzf) hd <- header(ms) ms1 <- which(hd$msLevel == 1) rtsel <- hd$retentionTime[ms1] / 60 > 30 & hd$retentionTime[ms1] / 60 < 35 library("MSnbase") (M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd)) ## ----mapsheat------------------------------------------------------------ library("lattice") ff <- colorRampPalette(c("yellow", "steelblue")) trellis.par.set(regions=list(col=ff(100))) plot(M, aspect = 1, allTicks = FALSE) ## ----maps3D-------------------------------------------------------------- M@map[msMap(M) == 0] <- NA plot3D(M, rgl = FALSE) ## ----rglmap, eval=FALSE-------------------------------------------------- ## library("rgl") ## plot3D(M, rgl = TRUE) ## ----msdetails----------------------------------------------------------- lout <- matrix(NA, ncol = 10, nrow = 8) lout[1:2, ] <- 1 for (ii in 3:4) lout[ii, ] <- c(2, 2, 2, 2, 2, 2, 3, 3, 3, 3) lout[5, ] <- rep(4:8, each = 2) lout[6, ] <- rep(4:8, each = 2) lout[7, ] <- rep(9:13, each = 2) lout[8, ] <- rep(9:13, each = 2) i <- ms1[which(rtsel)][1] j <- ms1[which(rtsel)][2] ms2 <- (i+1):(j-1) layout(lout) par(mar=c(4,2,1,1)) chromatogram(ms) abline(v = hd[i, "retentionTime"], col = "red") par(mar = c(3, 2, 1, 0)) plot(peaks(ms, i), type = "l", xlim = c(400, 1000)) legend("topright", bty = "n", legend = paste0( "Acquisition ", hd[i, "acquisitionNum"], "\n", "Retention time ", formatRt(hd[i, "retentionTime"]))) abline(h = 0) abline(v = hd[ms2, "precursorMZ"], col = c("#FF000080", rep("#12121280", 9))) par(mar = c(3, 0.5, 1, 1)) plot(peaks(ms, i), type = "l", xlim = c(521, 522.5), yaxt = "n") abline(h = 0) abline(v = hd[ms2, "precursorMZ"], col = "#FF000080") ##par(mar = omar) par(mar = c(2, 2, 0, 1)) for (ii in ms2) { p <- peaks(ms, ii) plot(p, xlab = "", ylab = "", type = "h", cex.axis = .6) legend("topright", legend = paste0("Prec M/Z\n", round(hd[ii, "precursorMZ"], 2)), bty = "n", cex = .8) } ## ----maps3D2------------------------------------------------------------- M2 <- MSmap(ms, i:j, 100, 1000, 1, hd) plot3D(M2) ## ----barcode, fig.height=2, fig.width=12--------------------------------- par(mar=c(4,1,1,1)) image(t(matrix(hd$msLevel, 1, nrow(hd))), xlab="Retention time", xaxt="n", yaxt="n", col=c("black","steelblue")) k <- round(range(hd$retentionTime) / 60) nk <- 5 axis(side=1, at=seq(0,1,1/nk), labels=seq(k[1],k[2],k[2]/nk)) ## ----anim1, eval=FALSE--------------------------------------------------- ## library("animation") ## an1 <- function() { ## for (i in seq(0, 5, 0.2)) { ## rtsel <- hd$retentionTime[ms1] / 60 > (30 + i) & ## hd$retentionTime[ms1] / 60 < (35 + i) ## M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd) ## M@map[msMap(M) == 0] <- NA ## print(plot3D(M, rgl = FALSE)) ## } ## } ## ## saveGIF(an1(), movie.name = "msanim1.gif") ## ----anim2, eval=FALSE--------------------------------------------------- ## an2 <- function() { ## for (i in seq(0, 2.5, 0.1)) { ## rtsel <- hd$retentionTime[ms1] / 60 > 30 & hd$retentionTime[ms1] / 60 < 35 ## mz1 <- 520 + i ## mz2 <- 522 + i ## M <- MSmap(ms, ms1[rtsel], mz1, mz2, .005, hd) ## M@map[msMap(M) == 0] <- NA ## print(plot3D(M, rgl = FALSE)) ## } ## } ## ## saveGIF(an2(), movie.name = "msanim2.gif") ## ----msnbviz------------------------------------------------------------- library("MSnbase") data(itraqdata) itraqdata2 <- pickPeaks(itraqdata, verbose = FALSE) plot(itraqdata[[25]], full=TRUE, reporters = iTRAQ4) par(oma = c(0, 0, 0, 0)) par(mar = c(4, 4, 1, 1)) plot(itraqdata2[[25]], itraqdata2[[28]], sequences = rep("IMIDLDGTENK", 2)) ## ----protviz------------------------------------------------------------- library("protViz") data(msms) fi <- fragmentIon("TAFDEAIAELDTLNEESYK") fi.cyz <- as.data.frame(cbind(c=fi[[1]]$c, y=fi[[1]]$y, z=fi[[1]]$z)) p <- peakplot("TAFDEAIAELDTLNEESYK", spec = msms[[1]], fi = fi.cyz, itol = 0.6, ion.axes = FALSE) ## ----strp---------------------------------------------------------------- str(p) ## ----mqraw--------------------------------------------------------------- library("MALDIquant") data("fiedler2009subset", package="MALDIquant") plot(fiedler2009subset[[14]]) ## ----mqestimatebaseline-------------------------------------------------- transformedSpectra <- transformIntensity(fiedler2009subset, method = "sqrt") smoothedSpectra <- smoothIntensity(transformedSpectra, method = "SavitzkyGolay") plot(smoothedSpectra[[14]]) lines(estimateBaseline(smoothedSpectra[[14]]), lwd = 2, col = "red") ## ----mqremovebaseline---------------------------------------------------- rbSpectra <- removeBaseline(smoothedSpectra) plot(rbSpectra[[14]]) ## ----mqpeaks------------------------------------------------------------- cbSpectra <- calibrateIntensity(rbSpectra, method = "TIC") peaks <- detectPeaks(cbSpectra, SNR = 5) plot(cbSpectra[[14]]) points(peaks[[14]], col = "red", pch = 4, lwd = 2) ## ----mqlabelpeaks, echo = -(1:2)----------------------------------------- plot(cbSpectra[[14]]) points(peaks[[14]], col = "red", pch = 4, lwd = 2) top5 <- intensity(peaks[[14]]) %in% sort(intensity(peaks[[14]]), decreasing = TRUE)[1:5] labelPeaks(peaks[[14]], index = top5, avoidOverlap = TRUE) ## ----mqwarp, fig.keep = "last"------------------------------------------- par(mfrow = c(2, 2)) warpingFunctions <- determineWarpingFunctions(peaks, tolerance = 0.001, plot = TRUE, plotInteractive = TRUE) par(mfrow = c(1, 1)) warpedSpectra <- warpMassSpectra(cbSpectra, warpingFunctions) warpedPeaks <- warpMassPeaks(peaks, warpingFunctions) ## ----mqwarped------------------------------------------------------------ sel <- c(2, 10, 14, 16) xlim <- c(4180, 4240) ylim <- c(0, 1.9e-3) lty <- c(1, 4, 2, 6) par(mfrow = c(1, 2)) plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n") for (i in seq(along = sel)) { lines(peaks[[sel[i]]], lty = lty[i], col = i) lines(cbSpectra[[sel[i]]], lty = lty[i], col = i) } plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n") for (i in seq(along = sel)) { lines(warpedPeaks[[sel[i]]], lty = lty[i], col = i) lines(warpedSpectra[[sel[i]]], lty = lty[i], col = i) } par(mfrow = c(1, 1)) ## ----mqmsi, cache=FALSE, eval=FALSE, warning=FALSE----------------------- ## library("MALDIquant") ## library("MALDIquantForeign") ## ## spectra <- importBrukerFlex("http://files.figshare.com/1106682/MouseKidney_IMS_testdata.zip", verbose = FALSE) ## ## spectra <- smoothIntensity(spectra, "SavitzkyGolay", halfWindowSize = 8) ## spectra <- removeBaseline(spectra, method = "TopHat", halfWindowSize = 16) ## spectra <- calibrateIntensity(spectra, method = "TIC") ## avgSpectrum <- averageMassSpectra(spectra) ## avgPeaks <- detectPeaks(avgSpectrum, SNR = 5) ## ## avgPeaks <- avgPeaks[intensity(avgPeaks) > 0.0015] ## ## oldPar <- par(no.readonly = TRUE) ## layout(matrix(c(1,1,1,2,3,4), nrow = 2, byrow = TRUE)) ## plot(avgSpectrum, main = "mean spectrum", ## xlim = c(3000, 6000), ylim = c(0, 0.007)) ## lines(avgPeaks, col = "red") ## labelPeaks(avgPeaks, cex = 1) ## ## par(mar = c(0.5, 0.5, 1.5, 0.5)) ## plotMsiSlice(spectra, ## center = mass(avgPeaks), ## tolerance = 1, ## plotInteractive = TRUE) ## par(oldPar) ## ----ims-shiny, eval=FALSE----------------------------------------------- ## library("shiny") ## runGitHub("sgibb/ims-shiny") ## ----spatprot------------------------------------------------------------ library("pRoloc") library("pRolocdata") data(tan2009r1) ## these params use class weights fn <- dir(system.file("extdata", package = "pRoloc"), full.names = TRUE, pattern = "params2.rda") load(fn) setStockcol(NULL) setStockcol(paste0(getStockcol(), 90)) w <- table(fData(tan2009r1)[, "pd.markers"]) (w <- 1/w[names(w) != "unknown"]) tan2009r1 <- svmClassification(tan2009r1, params2, class.weights = w, fcol = "pd.markers") ptsze <- exp(fData(tan2009r1)$svm.scores) - 1 ## ----spatplot, fig.width=12, fig.height=6-------------------------------- lout <- matrix(c(1:4, rep(5, 4)), ncol = 4, nrow = 2) layout(lout) cls <- getStockcol() par(mar = c(4, 4, 1, 1)) plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "mitochondrion"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "mitochondrion")], mcol = cls[5]) legend("topright", legend = "mitochondrion", bty = "n") plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "ER")], mcol = cls[2]) legend("topright", legend = "ER", bty = "n") plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "Golgi")], mcol = cls[3]) legend("topright", legend = "Golgi", bty = "n") plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "PM"), ], markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "PM")], mcol = cls[8]) legend("topright", legend = "PM", bty = "n") plot2D(tan2009r1, fcol = "svm", cex = ptsze, method = "kpca") addLegend(tan2009r1, where = "bottomleft", fcol = "svm", bty = "n") ## ----si------------------------------------------------------------------ print(sessionInfo(), locale = FALSE)