## ----Setup, echo=FALSE, results='hide', message=FALSE-------------------------
library("Biobase")
library("annotate")
library("GOstats")
library("xtable")
library("multtest")
library("Rgraphviz")
library("hgu95av2.db")
library("GO.db")
library("genefilter")
library("ALL")

## ----Example, results='hide', echo=FALSE--------------------------------------
## subset of interest: 37+42 samples
data(ALL)
eset <- ALL[, intersect(
    grep("^B", as.character(ALL$BT)),
    which(as.character(ALL$mol) %in% c("BCR/ABL", "NEG", "ALL1/AF4"))
)]
MB <- factor(eset$mol.bio)

## intensities above 100 in at least 7 of the samples
f1 <- kOverA(7, log2(100))
f2 <- function(x) {
    gps <- split(2^x, MB)
    mns <- sapply(gps, mean)
    if (max(mns) - min(mns) < 100) FALSE else TRUE
}
ff <- filterfun(f1, f2)
selected <- genefilter(eset, ff)
sum(selected)
esetSub <- eset[selected, ]

## ----mtFstats, results='hide', echo=FALSE-------------------------------------
pvCutOff <- 0.05

Fstats <- mt.maxT(exprs(esetSub), as.numeric(MB) - 1,
                  B = 1000, test = "f"
)
eSet <- esetSub[Fstats$index[Fstats$adjp < pvCutOff], ]
gN <- featureNames(eSet)
lls <- unlist(mget(gN, hgu95av2ENTREZID, ifnotfound = NA))
eS <- eSet[!duplicated(lls), ]
gN <- featureNames(eS)
lls <- unlist(mget(gN, hgu95av2ENTREZID, ifnotfound = NA))
lls <- as.character(lls[!is.na(lls)])
syms <- unlist(mget(gN, hgu95av2SYMBOL, ifnotfound = NA))

## ----inducedGO, echo=FALSE, results='hide'------------------------------------
gMF <- makeGOGraph(lls, "MF", chip = "hgu95av2")
gBP <- makeGOGraph(lls, "BP", chip = "hgu95av2")
gCC <- makeGOGraph(lls, "CC", chip = "hgu95av2")
nMF <- list()
lbs <- rep("", length(nodes(gMF)))
names(lbs) <- nodes(gMF)
nMF$label <- lbs
nBP <- list()
lbs <- rep("", length(nodes(gBP)))
names(lbs) <- nodes(gBP)
nBP$label <- lbs
nCC <- list()
lbs <- rep("", length(nodes(gCC)))
names(lbs) <- nodes(gCC)
nCC$label <- lbs
if (require("Rgraphviz")) {
    gMFlo <- agopen(gMF, "gMF")
    gBPlo <- agopen(gBP, "gBP")
    gCClo <- agopen(gCC, "gCC")
}

## ----GOMF, fig=TRUE, echo=FALSE, warning=FALSE, fig.cap = " The induced MF GO graph for the selected genes."----
if (require("Rgraphviz")) {
    plot(gMFlo, nodeAttrs = nMF, main = "Molecular Function")
}

## ----GOBP, fig=TRUE, echo=FALSE, warning=FALSE, fig.cap = " The induced BP GO graph for the selected genes."----
if (require("Rgraphviz")) {
    plot(gBPlo, nodeAttrs = nBP, main = "Biological Process")
}

## ----GOCC, fig=TRUE, echo=FALSE, warning=FALSE, fig.cap = "The induced CC GO graph for the selected genes."----
if (require("Rgraphviz")) {
    plot(gCClo, nodeAttrs = nCC, main = "Cellular Component")
}

## ----findhigestmeans----------------------------------------------------------
mns <- apply(exprs(eS), 1, function(x) sapply(split(x, MB), mean))
whismax <- apply(mns, 2, function(x) match(max(x), x))
maxNames <- names(mns[, 1])[whismax]
names(maxNames) <- names(whismax)
table(maxNames)

## ----genesToGO----------------------------------------------------------------
CCnodes <- nodes(gCC)
nodes2affy <- mget(CCnodes, hgu95av2GO2ALLPROBES, ifnotfound = NA)
cts <- sapply(nodes2affy, function(x) {
    wh <- names(whismax) %in% x
    table(maxNames[wh])
})
all1cts <- sapply(cts, function(x) x["ALL1/AF4"])
all1cts <- ifelse(is.na(all1cts), 0, all1cts)
## put nice names on
names(all1cts) <- names(cts)
bcrcts <- sapply(cts, function(x) x["BCR/ABL"])
bcrcts <- ifelse(is.na(bcrcts), 0, bcrcts)
names(bcrcts) <- names(cts)
negcts <- sapply(cts, function(x) x["NEG"])
negcts <- ifelse(is.na(negcts), 0, negcts)
names(negcts) <- names(cts)
ctmat <- cbind(all1cts, bcrcts, negcts)

## ----layoutandrender, eval=FALSE, warning=FALSE, results="hide"---------------
#  if (require(Rgraphviz)) {
#      opar <- par(xpd = NA)
#      plotPieChart <- function(curPlot, counts, main) {
#          renderNode <- function(x) {
#              force(x)
#              y <- x * 100 + 1
#              function(node, ur, attrs = list(), radConv = 1) {
#                  nodeCenter <- getNodeCenter(node)
#                  pieGlyph(y,
#                      xpos = getX(nodeCenter),
#                      ypos = getY(nodeCenter),
#                      radius = getNodeRW(node),
#                      col = c("blue", "green", "red")
#                  )
#              }
#          }
#          drawing <- vector(mode = "list", length = nrow(counts))
#          for (i in 1:length(drawing)) {
#              drawing[[i]] <- renderNode(counts[i, ])
#          }
#          if (missing(main)) {
#              main <- "Example Pie Chart Plot"
#          }
#  
#          plot(curPlot, drawNode = drawing, main = main)
#  
#          legend(
#              x = "bottomleft", legend = c("ALL1/AF4", "BCR/ABL", "NEG"),
#              fill = c("blue", "green", "red")
#          )
#      }
#      plotPieChart(gCClo, ctmat)
#      par(opar)
#  }

## ----imageMap, message=FALSE, results='hide'----------------------------------
getNodeBB <- function(ingraph) {
    xypos <- getNodeXY(ingraph)
    hts <- getNodeHeight(ingraph)
    wdsR <- getNodeRW(ingraph)
    wdsL <- getNodeLW(ingraph)
    llx <- xypos$x - wdsL
    lly <- xypos$y - (hts / 2)
    urx <- xypos$x + wdsR
    ury <- xypos$y + (hts / 2)
    cbind(llx, lly, urx, ury)
}
CCbb <- getNodeBB(gCClo)
## now we need to adjust the graphBB to the plot region
bbG <- boundBox(gCClo)
llx <- getX(botLeft(bbG))
lly <- getY(botLeft(bbG))
urx <- getX(upRight(bbG))
ury <- getY(upRight(bbG))
## FIXME: work in progress here - we need to do a bit of mapping
## to get the right user coords on the jpg file...
if (interactive()) {
    jpeg("mygraph.jpg", quality = 100, width = urx - llx, height = ury - lly)
    opar <- par(plt = c(0, 1, 0, 1), xpd = NA)
    plotPieChart(gCClo, ctmat)
    par(opar)
    dev.off()
}
## FIXME (wh 20.1.2005): better to use imageMap function for Ragraph objects
## in the package Rgraphviz instead.
if (require("geneplotter")) {
    con <- openHtmlPage("example", "An Image Map")

    imageMap(CCbb, con,
        tags = list(
            TITLE = getNodeNames(gCClo),
            HREF  = rep("", length(nodes(gCC)))
        ),
        imgname = "mygraph.jpg"
    )

    closeHtmlPage(con)
}

## ----multip-------------------------------------------------------------------
igenes <- unlist(mget(gN[1:10], hgu95av2ENTREZID))
igenes <- igenes[!is.na(igenes)]
igenes <- as.character(igenes)
psets <- mget(igenes, revmap(hgu95av2ENTREZID))
psets <- sapply(psets, function(x) x[1])
GOs <- mget(psets, hgu95av2GO, ifnotfound = NA)
gBP <- sapply(GOs, getOntology, "BP")
## how many terms

sum(sapply(gBP, length))

## drop those with no BP annotations
hasBP <- sapply(gBP, function(x) length(x) > 0 && !is.na(x[1]))
gBP <- gBP[hasBP]
ggs <- lapply(igenes[hasBP], makeGOGraph, "BP", chip = "hgu95av2.db")
## you could also do ggx = lapply(gBP, GOGraph, GOBPPARENTS)
## and should get the same thing

simatM1 <- matrix(1, nr = sum(hasBP), nc = sum(hasBP))
for (i in 1:sum(hasBP)) {
    for (j in 1:sum(hasBP)) {
        if (i == j) {
            next
        }   else {
            simatM1[i, j] <- simUI(ggs[[i]], ggs[[j]])
        }
    }
}
library("RBGL")
simatM2 <- matrix(1, nr = sum(hasBP), nc = sum(hasBP))
for (i in 1:sum(hasBP)) {
    for (j in 1:sum(hasBP)) {
        if (i == j) {
            next
        }   else {
            simatM2[i, j] <- simLP(ggs[[i]], ggs[[j]])
        }
    }
}

## ----leavesEx-----------------------------------------------------------------
gCC.leaves <- leaves(gCC, "in")
length(gCC.leaves)
gCC.leaves[1:5]