An introduction to the nuCpos package

Hiroaki Kato^{*}, Takeshi Urano

January 19, 2023

1 About nuCpos

nuCpos, a derivative of NuPoP, is an R package for predicting nucleosome positions. In nuCpos, a duration hidden Markov model is trained with a C hemical map of nucleosomes either from budding yeast Saccharomyces cerevisiae (Brogaard et al. (2012)), fission yeast Schizosaccharomyces pombe (Moyle-Heyrman et al. (2012)), or embryonic stem cells of house mouse Mus musculus (Voong et al. (2016)). nuCpos outputs the Viterbi (most probable) path of nucleosome-linker states, predicted nucleosome occupancy scores and histone binding affinity (HBA) scores as NuPoP does. nuCpos can also calculate local and whole nucleosomal HBA scores for a given 147-bp sequence.

The parental package NuPoP, licensed under GPL-2, was developed by Ji-Ping Wang and Liqun Xi. Please refer to Xi et al. (2010) and Wang et al. (2008) for technical details of NuPoP. Their excellent codes were adapted in nuCpos to demonstrate the usefulness of chemical maps in prediction. In dHMM-based predicton, users of nuCpos can choose whether HBA scores will be smoothed or not in the output. Note that when nuCpos was released, NuPoP only used an MNase-seq-based map of budding yeast nucleosomes to train a duration hidden Markov model. However, as NuPoP now provides chemical map-based prediction, users are encouraged to use NuPoP functions to conduct dHMM-based prediction in their original way.

2 nuCpos functions

nuCpos has three functions: predNuCpos, HBA, and localHBA. The predNuCpos function provides dHMM-based prediction of nucleosome occupancy. This function is built to demonstrate the usefulness of chemical maps in prediction. Users can obtain unsmoothed HBA scores with this function. Note: *NuPoP* now provides chemical map-based prediction.

The functions HBA and localHBA receive a sequence of 147-bp DNA and calculate whole nucleosomal and local HBA scores. These functions invoke core Fortran codes for HBA calculation that were adapted from the excellent dHMM code of *NuPoP*.

nuCpos requires the Biostrings package, especially when DNA sequences are given as DNAString objects to the functions HBA, and localHBA. These functions can also receive DNA sequences as simple character string objects without loading the Biostrings package. Note: nuCpos requires the NuPoP package to perform some example runs.

Load the *nuCpos* package as follows:

> library(nuCpos)

 $^{^{*}}hkato@med.shimane-u.ac.jp$

3 Performing predictions with predNuCpos

The predNuCpos function acts like the predNuPoP function of NuPoP. When the ActLikePredNuPoP argument is set as TRUE, predNuCpos reads a DNA sequence file in FASTA format and invokes a Fortran subroutine to perform predictions. The prediction results will be saved in the working directory. TRP1ARS1x1.fasta, the DNA sequence of TRP1ARS1 circular minichromosome (1,465 bp) (Fuse et al. (2017)), in extdata can be used for an example run. Call the predNuCpos function as follows:

```
> predNuCpos(file = system.file("extdata", "TRP1ARS1x1.fasta",
```

```
+ package = "nuCpos"), species = "sc", smoothHBA = FALSE,
```

```
+ ActLikePredNuPoP = TRUE)
```

The argument file is the path to the fasta file. The argument species can be specified as follows: mm = M. musculus; sc = S. cerevisiae; sp = S. pombe. Re-scaling of the nucleosome and linker models for the prediction of other species' nucleosomes are not supported. nuCpos uses 4th order Markov chain models for the prediction.

The name of the output file will be like *TRP1ARS1x1.fasta_Prediction4.txt*. As in the output file produced by the parental *NuPoP* package, it will contain five columns:

- 1. Position: position in the input DNA sequence.
- 2. P-start: probability that a nucleosome starts at.
- 3. Occup: nucleosome occupancy score.
- 4. N/L: Viterbi path (1 and 0 for the nucleosome and linker states, respectively).
- 5. Affinity: histone binding affinity score.

To import the output into R, the readNuPoP function of NuPoP can be used:

```
> library(NuPoP)
> results.TRP1ARS1x1 <- readNuPoP("TRP1ARS1x1.fasta_Prediction4.txt",
+
      startPos = 1, endPos = 1465)
> results.TRP1ARS1x1[1:5,]
  Position P.start Occup N/L Affinity
1
         1
             0.000 0.000
                            0
                                     ΝA
2
         2
             0.000 0.000
                            0
                                     ΝA
3
         3
             0.000 0.000
                            0
                                     ΝA
4
         4
             0.001 0.001
                                     NA
                            0
5
         5
              0.005 0.006
                            0
                                     NA
```

The arguments *startPos* and *endPos* are used to import a part of the prediction results. In this example, the prediction results for the whole tested sequence is imported. First and last 73-bp regions do not have HBA scores (Affinity) as they cannot be calculated. The HBA scores start from the 74th position:

```
> results.TRP1ARS1x1[72:76,]
```

	Position	P.start	Occup	N/L	Affinity
72	72	0.001	0.893	1	NA
73	73	0.000	0.893	1	NA
74	74	0.000	0.893	1	0.346
75	75	0.000	0.893	1	-4.435
76	76	0.000	0.893	1	-3.429

For visualization of the prediction results, the plotNuPoP function of NuPoP can be used. This function draws two plots in the graphical window. The top one shows predicted nucleosome occupancy. In the bottom one, probability of a nucleosome to start at the given position (blue vertical lines) and the Viterbi path (red lines) are shown as well as the nucleosome occupancy (gray).

> plotNuPoP(results.TRP1ARS1x1)

Nucleosome occupancy plot

For prediction of nucleosome positioning in short circular DNA, one can use a triplicated sequence for prediction and read only the central copy for the evaluation. By triplicating the DNA, inaccurate prediction near the DNA ends, which are joined to each other in the circular form, can be avoided.

```
> predNuCpos(file = system.file("extdata", "TRP1ARS1x3.fasta",
+ package = "nuCpos"), species = "sc", smoothHBA = FALSE,
```

```
+ ActLikePredNuPoP = TRUE)
> results.TRP1ARS1 <- readNuPoP("TRP1ARS1x3.fasta_Prediction4.txt",
+ startPos = 1466, endPos = 2930)</pre>
```

Here, TRP1ARS1x3.fasta in extdata is a triplicated sequence (4,395 bp) of the *TRP1ARS1* minichromosome (1,465 bp). The central part (from the coordinate 1,466 to 2,930) of the prediction results is read by readNuPoP. They are apparently different from the previous results near the terminal regions.

```
> par(mfrow = c(2, 1))
> plot(x = 1:1465, y = results.TRP1ARS1x1[,3], type = "n",
     ylim = c(-0.05, 1), xlab = "Position from the EcoRI site #1",
     ylab = "probability/occupancy")
+
> title("Not triplicated")
> polygon(c(1, 1:1465, 1465), c(0, results.TRP1ARS1x1[,3], 0), col = 8)
> points(x = 1:1465, y = results.TRP1ARS1x1[,4], type = "1", col = 2)
> points(x = 1:1465, y = results.TRP1ARS1x1[, 2], type = "h", col = 4)
> plot(x = 1:1465, y = results.TRP1ARS1[,3], type = "n",
     ylim = c(-0.05, 1), xlab = "Position from the EcoRI site #1",
     ylab = "probability/occupancy")
+
> title("Triplicated: central copy")
> polygon(c(1, 1:1465, 1465), c(0, results.TRP1ARS1[,3], 0), col = 8)
> points(x = 1:1465, y = results.TRP1ARS1[,4], type = "1", col = 2)
> points(x = 1:1465, y = results.TRP1ARS1[, 2], type = "h", col = 4)
```


0 500 1000 1500

Position from the EcoRI site #1

By specifying the argument *smoothHBA* as TRUE, HBA scores can be smoothed in a 55-bp window as being done by the predNuPoP function of NuPoP.

```
> predNuCpos(file = system.file("extdata", "TRP1ARS1x3.fasta",
     package = "nuCpos"), species = "sc", smoothHBA = TRUE,
+
     ActLikePredNuPoP = TRUE)
+
 results.TRP1ARS1.smooth <- readNuPoP("TRP1ARS1x3.fasta_Prediction4.txt",
>
     startPos = 1466, endPos = 2930)
+
> par(mfrow = c(2, 1))
 plot(x = 1:1465, y = results.TRP1ARS1[,3], type = "n",
>
     ylim = c(-0.05, 1), xlab = "Position from the EcoRI site #1",
+
     ylab = "probability/occupancy")
+
> title("Occupancy(grey)/probability(blue)/Viterbi(red)")
> polygon(c(1, 1:1465, 1465), c(0, results.TRP1ARS1[,3], 0), col = 8)
> points(x = 1:1465, y = results.TRP1ARS1[,4], type = "1", col = 2)
> points(x = 1:1465, y = results.TRP1ARS1[, 2], type = "h", col = 4)
> plot(x = 1:1465, y = results.TRP1ARS1[,5], type = "n",
     xlab = "Position from the EcoRI site #1",
     ylab = "HBA", main = "HBA(red)/smoothed HBA(blue)")
> points(x = 1:1465, y = results.TRP1ARS1[,5], type = "1", col = 2)
> points(x = 1:1465, y = results.TRP1ARS1.smooth[,5], type = "1", col = 4)
```


As shown as a red line in the bottom one of the above plots, non-smoothed HBA scores in eukaryotic sequences exhibit about 10-bp periodicity. The dyads of predicted nucleosomes usually locate at the coordinates with high HBA scores. HBA scores in the output of predNuCpos can be standardized as being done by the predNuPoP function of NuPoP by specifying the argument *std* of predNuCpos as TRUE. The default setting for *std* is FALSE.

When the argument ActLikePredNuPoP is set as FALSE, which is the default setting, predNuCpos receives a character string or DNAString object as *inseq*. In this case, prediction results will be returned to the R environment, and no file will be generated in the working directory. The input sequence (*inseq*) must not contain characters other than A/C/G/T.

The results will contain five columns:

- 1. pos: position in the input DNA sequence.
- 2. pstart: probability that a nucleosome starts at.
- 3. nucoccup: nucleosome occupancy score.
- 4. viterbi: Viterbi path (1 and 0 for the nucleosome and linker states, respectively).
- 5. affinity: histone binding affinity score.

```
> TRP1ARS1 <- paste(scan(file =</pre>
      system.file("extdata", "TRP1ARS1x1.fasta", package = "nuCpos"),
+
      what = character(), skip = 1), sep = "", collapse = "")
+
> results.TRP1ARS1.internal <-</pre>
      predNuCpos(inseq = TRP1ARS1, species = "sc", smoothHBA = FALSE,
+
      ActLikePredNuPoP = FALSE)
+
> results.TRP1ARS1.internal[72:76,]
             pstart nucoccup viterbi
                                        affinity
   pos
72 72 9.802925e-04 0.8926019
                               1
                                              NA
73 73 3.182192e-04 0.8929201
                                    1
                                              ΝA
74 74 5.025299e-05 0.8929704
                                    1 0.3456824
75 75 5.160730e-06 0.8929756
                                    1 -4.4353083
76 76 1.397652e-06 0.8929769
                                    1 -3.4287470
```

4 Histone binding affinity score calculation with HBA

HBA score can be calculated for a given 147-bp sequence with the HBA function. In the examples bellow, a character string object inseq and a DNAString object INSEQ with the same 147-bp DNA sequences are given to HBA. Note: the *Biostrings* package is required for the latter case.

```
> load(system.file("extdata", "inseq.RData", package = "nuCpos"))
> HBA(inseq = inseq, species = "sc")
      HBA
-2.460025
> for(i in 1:3) cat(substr(inseq, start = (i-1)*60+1,
      stop = (i-1)*60+60), "\n"
+
ATCGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAA
ACGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCA
GGCACGTGTCAGATATATACATCCGAT
> load(system.file("extdata", "INSEQ_DNAString.RData",
      package = "nuCpos"))
+
> INSEQ
147-letter DNAString object
seq: ATCGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTC...TAGTCTCCAGGCACGTGTCAGATATATACATCCGAT
> HBA(inseq = INSEQ, species = "sc")
      HBA
-2.460025
```

The argument *inseq* is the character string object to be given. Alternatively, a DNAString object can be used here. The length of DNA must be 147 bp. The argument *species* can be specified as follows: mm = M. musculus; sc = S. cerevisiae; sp = S. pombe.

5 Local histone binding affinity score calculation with localHBA

Local HBA scores are defined as HBA scores for 13 overlapping subnucleosomal segments named A to M. They can be calculated for a given 147-bp sequence with the localHBA function. Like HBA, this function can receive either a character string object or a DNAString object. The segment G corresponds to the central 21 bp region, in which the dyad axis passes through the 11th base position. This means that the local HBA score for the G segment implies the relationship between DNA and histone proteins at around superhelical locations -0.5 and +0.5. The neighboring F segment, which is 20 bp in length, is for SHLs -1.5 and -0.5. The result of example run shown below suggests that subsequence of inseq around SHL -3.5 and -2.5 is suitable for nucleosome formation.

```
> localHBA(inseq = inseq, species = "sc")
                 1HBA_B
                              1HBA_C
                                          1HBA_D
                                                       1HBA_E
                                                                   1HBA_F
     1HBA_A
                                                  2.90458625 -1.35195919
-1.56140949 - 1.62502354
                         0.48885990
                                      2.37615568
     1HBA_G
                 1HBA_H
                              1HBA_I
                                          1HBA_J
                                                       1HBA_K
                                                                   1HBA_L
-3.13228907 -0.32208031
                         0.27650871
                                      0.01922002
                                                  0.49787625 -0.17151500
     1HBA_M
-1.27186158
> barplot(localHBA(inseq = inseq, species = "sc"),
```

```
+ names.arg = LETTERS[1:13], xlab = "Nucleosomal subsegments",
```

```
+ ylab = "local HBA", main = "Local HBA scores for inseq")
```

Local HBA scores for inseq

6 Acknowledgements

We would like to thank Drs. Shimizu, Fuse and Ichikawa for sharing DNA sequences and *in vivo* data, and giving fruitful comments. We would like to thank Dr. Ji-Ping Wang and his colleagues for distributing NuPoP under the GPL-2 license. In this package, their excellent code for dHMM-based prediction was adapted for chemical map-based prediction to demonstrate the usefulness of chemical maps in prediction. As we noticed that canceling of HBA smoothing helps predicting rotational settings, predNuCpos provides this option. However, for those who want to predict nucleosome occupancy in the original way with chemical maps, we encourage users to use NuPoP functions as it now provides chemical map-based predictions. In our functions HBA and localHBA, their excellent code was also adapted to calculate the scores of given 147-bp sequences independently of the genomic context.

References

Wang JP, Fondufe-Mittendorf Y, Xi L, Tsai GF, Segal E and Widom J (2008). Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae. PLoS Computational Biology, 4(9):e1000175.

- Xi L, Fondufe-Mittendorf Y, Xia L, Flatow J, Widom J and Wang JP (2010). Predicting nucleosome positioning using a duration hidden markov model. *BMC Bioinformatics*, 11:346.
- Brogaard K, Xi L, and Widom J (2012). A map of nucleosome positions in yeast at base-pair resolution. *Nature*, 486(7404):496-501.
- Moyle-Heyrman G, Zaichuk T, Xi L, Zhang Q, Uhlenbeck OC, Holmgren R, Widom J and Wang JP (2013). Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning. Proc. Natl. Acad. Sci. U. S. A., 110(50):20158-63.
- Ichikawa Y, Morohoshi K, Nishimura Y, Kurumizaka H and Shimizu M (2014). Telomeric repeats act as nucleosome-disfavouring sequences in vivo. *Nucleic Acids Res.*, 42(3):1541-1552.
- Voong LN, Xi L, Sebeson AC, Xiong B, Wang JP and Wang X (2016). Insights into Nucleosome Organization in Mouse Embryonic Stem Cells through Chemical Mapping. *Cell*, 167(6):1555-1570.
- Fuse T, Katsumata K, Morohoshi K, Mukai Y, Ichikawa Y, Kurumizaka H, Yanagida A, Urano T, Kato H, and Shimizu M (2017). Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo. *Plos One*, 12(10):e0186974.